
SCRIPTING GUIDE
AND REFERENCE MANUAL

February 2016

DELIVERY

2

SCRIPTING GUIDE AND REFERENCECONTENTS

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Fusion 8

About this Document 5

Target Audience 5

Requirements 5

Conventions 6

1 Scripting Guide 7

Introduction 9

Quick Start Tutorial 10

Scripting Languages 14

Lua 14

Python 15

Scripting and Debugging 22

Console 22

Types of Scripts 23

Interactive Scripts 23

External Scripts 24

Events & Callbacks 25

InTool Scripts 28

Simple Expressions 29

Fuses 29

Fusion’s Object Model 30

Overview 30

Common Object Dependencies 30

Attributes 39

Object Data 40

Metadata 42

Graphical User Interfaces 43

DELIVERY

3

SCRIPTING GUIDE AND REFERENCECONTENTS

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Fusion 8

2 Scripting Reference 48

Class Hierarchy 51

Reference 52

BezierSpline 52

BinClip 55

BinItem 55

BinManager 56

BinStill 57

ChildFrame 57

ChildGroup 59

Composition 59

FloatViewFrame 94

FlowView 95

FontList 98

FuFrame 99

Fusion 102

FuView 126

GL3DViewer 127

GLImageViewer 127

GLPreview 129

GLView 129

GLViewer 138

Gradient 141

GraphView 142

HotkeyManager 144

Image 144

ImageCacheManager 146

IOClass 147

KeyFrameView 148

DELIVERY

4

SCRIPTING GUIDE AND REFERENCECONTENTS

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Fusion 8

Link 148

List 149

Loader 149

MailMessage 149

MenuManager 153

Object 153

Operator 153

Parameter 171

PlainInput 172

PlainOutput 179

PolylineMask 181

Preview 182

QueueManager 183

Registry 191

RenderJob 197

RenderSlave 201

ScriptServer 204

SourceOperator 204

TimeRegion 204

TransformMatrix 205

3 Index 208

DELIVERY

5

SCRIPTING GUIDE AND REFERENCE

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

This document is divided into two sections: The Scripting Guide and the Scripting Reference. The
first section, the Scripting Guide, explains the scripting application programming interface (API)
of Fusion called FusionScript. It can be accessed via Lua or the Python programming language.
FusionScript can be utilized to automate repetitive or complex tasks, customize the application
behavior, extend Fusion’s functionality, or exchange data with third-party applications.

This guide contains information on how to get started, the differences of scripting languages, how
the API is laid out to represent the application model, and how to deal with it in practice.

The second section, the Scripting Reference, assumes you have an understanding of the scripting
concepts and the fundamentals of scripting from the first section. The Scripting Reference describes
the common API, its objects, members, arguments and usage.

In order to write custom tools or extend Fusion’s core functionality, refer to the C++ SDK or Fuse
documentation. For regular customization and Macros, read the corresponding chapter in the
Fusion User Guide.

Target Audience

This document is intended for developers, technical directors, and users knowledgeable in
programming. It was by no means written to teach programming concepts and does not act as a
reference for programming languages. Please refer to the documentation of the respective language
as advised in the chapter “Scripting Languages.” However, when possible practical examples will
be given and complete tutorials show the most common applications of FusionScript.

Requirements

In order to follow this guide, you will need to have a copy of Blackmagic Design Fusion 8 installed.

A few features only available in Fusion 8 Studio are highlighted, while every other sample will work
with the regular version of Fusion 8. In order to utilize Python, the C-based version of Python needs
to be installed as explained in detail in the chapter Scripting Languages.

The source code of both scripting languages needs to be stored as plain text, which can be written
in any non-formatting text processor like Notepad or TextEdit. It is recommended to make use of a
dedicated code editor to benefit from syntax highlighting and language-specific features.

About this Document

DELIVERY

6

SCRIPTING GUIDE AND REFERENCE

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Conventions

Important notes will be featured in text boxes like this:

Code is introduced in boxes with a monospaced font like this:

print(“Hello World from Fusion!”) -- Writes text to the console

Regular text may refer to code statements inline, which is also represented by a monospaced font,
e.g., the statement ‘print’ in this sentence:

The statement print writes text to the console.

Most examples shown in the guide are only excerpts of the full source code and may not be able to
work on their own. This helps to make the guide more readable. However, all passages marked as
Tutorial will contain full source code.

Most code examples are shown in Lua. Inline statements show the Lua implementation of the
particular statement; as with Lua, it is easier to identify properties and methods. In order to not
mix up Lua tuples with Python tuples, the generic term collection is used to describe tuples, list,
dictionaries, etc.

The code here is written for teaching purposes. Sometimes things that could be refactored into
separate methods are written explicitly or in a non-optimized way. Please do not hesitate to add
your own talent to the code after the fundamental concepts of the API are known.

For consistency reasons naming convention follows roughly the naming of the API (cameCase) for
both Lua and Python. Feel free to adapt to PEP8 or your own convention instead.

Note

Read the Introduction chapters before continuing with the guide.

1
Scripting Guide

8

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Introduction 9

Quick Start Tutorial 10

Scripting Languages 14

Lua 14

Python 15

Scripting and Debugging 22

Console 22

Types of Scripts 23

Interactive Scripts 23

External Scripts 24

Events & Callbacks 25

InTool Scripts 28

Simple Expressions 29

Fuses 29

Fusion’s Object Model 30

Overview 30

Common Object Dependencies 30

Attributes 39

Object Data 40

Metadata 42

Graphical User Interfaces 43

Content

9

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

What is scripting? Scripting is interpreting the specific programming language—in theory—line
by line or in the form of compiled bytecode as opposed to executing precompiled machine code
directly. Without going too deep into implementation details, it can be concluded that due to its
nature, a complex application like Fusion can act as host and provide access to its functionality
through a dedicated scripting API. The scripting environment wraps the underlying API and is less
likely to crash the whole application if third-party code is defective. Code can be changed on the fly
without restarting the host application. Additionally, a garbage collector does most of the memory
management in common scripting environments. All this results in slower evaluation compared
to native compiled code, but the performance is still beyond what can be done by a user with
the regular graphical user interface. The JustInTime (JIT) flavor of Lua that is utilized in Fusion is
especially known to perform almost as fast as native code in many cases.

Ultimately, scripting allows for any programmer to mix the language features and libraries of the
scripting language with the functionality of the host application. This allows an integration of third-
party data or applications.

Let’s examine practical uses of scripting within Fusion by example. Scripting in production may
help with:

 > Automation: For example, read all media files from a given folder,
for each of these, load them into a composition, add a watermark,
scale them, and render them to a specific location.

 > Repetitive tasks: For example find all savers in a composition
and set their state to pass-through.

 > Maintaining conventions: For example making sure the paths of the savers always
point at a specific location on the server, and follow a specific naming convention.

 > Tasks prone to human error: For example, verify that certain settings
are set before sending a composition to rendering.

 > Extending core features in the application: For example, importing
animation data from a third-party application.

 > Behavior that needs customization for specific pipeline: For example,
override what happens when certain events occur. It may enforce
certain tools to show up when a specific tool was created.

 > Communication with a third-party application: For example, not only
exchange data but also share events. When a specific pipeline tool
triggers to create a shot, create the corresponding composition.

These are just examples of common applications. Some scripts may require an interface in order to
adapt its behavior to a particular need. This may be a configuration file or information derived from
the applications state (maybe the current selected tool in the composition). But in many cases, a

Introduction

10

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

graphical user interface with a custom dialog that shows all the possible options for the behavior is
needed. The latter will be examined in detail in the Graphical User Interfaces chapter.

In Fusion, the scripting API called FusionScript gives access to the most required functionality from
the application. In order to fully utilize FusionScript, a basic understanding of how Fusion works
is needed. Once this model is known, it will be easier to travel through the Scripting Reference in
order to find a needed functionality.

With FusionScript, almost any aspect of Fusion can be accessed and controlled, whether it be the
composition and its tools, rendering, metadata, settings, and attributes or the interface.

As FusionScript is only an abstract API, it allows access via different scripting languages—most
notably the Lua Programming Language, which is embedded in Fusion or, if installed separately,
the Python Programming Language. Although these languages and their features differ greatly, the
FusionScript access from both languages is very similar as it accesses the same API. Differences and
limitations are explained in the following chapter.

Quick Start Tutorial

Without further ado, let’s jump right into a working example.

As proposed earlier, we will create a Lua script that will pass through all but the currently selected
Saver. If no Saver is selected, then basically all Savers will be passed through. This is very handy
when you have a huge composition but need to prerender only a specific saver.

First Steps

To start, we need to create a new script by accessing the Menu at Script->Edit->New …

In the FileDialog, store the script under the name Disable Unselected Savers.lua under the
Script folder.

In composition scripts, the filename is used as label to execute the script from the menu.
A meaningful name should be chosen.

By default, Fusion will open the default application if nothing else was set in the preferences. You
can manually edit the script by invoking Script->Edit->Disable Unselected Savers.

11

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

In the text processor, write the following line:

print(“Hello World from Fusion!”)

Save the script and execute it with Script->Disable Unselected Savers.

Switch to the Console tab in the interface. If everything was set up correctly, the console will show
the following text:

All standard output like print will be piped to the console.

The Real Script

Breaking down our intended script in steps the following functionality needs to be implemented:

1. Get and store the current selected tool, if it is a Saver.

2. Iterate through all Savers in the composition.

3. Set these to PassedThrough if they do not match our initial selection.

In Scripts that are executed directly within Fusion two variables are accessible by default:

fusion and composition. In order to save typing, you can also use the short form fu and comp.

As their names indicate with fusion, you gain access to the applications properties and methods,
while composition represents anything in the composition.

As all the tasks in this particular script concern the Composition, all required methods are to be
found in this object or its members. First of all:

comp:GetToolList(bool selected, string type = nil)

Note

Please note that you edit the script with the Script->Edit-> submenu but execute it directly
under Script->Name of your script.

All scripts in the composition script folder will be listed here, including subfolders.

12

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Returns all tools in the composition, or only the selected ones if the argument is set to true. The
type argument is optional. It can be used to filter only specific types of tools.

The tool itself is in fact an object of type Tool or Operator. As you can see, Fusion’s application
model follows the object-oriented programming concept, which will be examined in detail in the
following chapters.

A tool has various properties and methods. But what we are looking for is an Attribute.

The common attribute to read and write the PassThrough state of a tool is a boolean called TOOLB_
PassThrough.

Since in this case we will only be setting it, all we need is:

tools:SetAttrs({ TOOLB_PassThrough = True })

Note that we pass in a tuple, hence the curly brackets, as we could pass in multiple attributes to be
set at once.

With these two commands, we can accomplish all the tasks needed for this script.

Source File: 01 Disable Unselected Savers

comp:Lock()

local selectedSavers = comp:GetToolList(true, “Saver”)

local allSavers = comp:GetToolList(false, “Saver”)

for i, currentSaver in pairs(allSavers) do

 local isSelected = false

 for j, currentSelectedSaver in pairs(selectedSavers) do

 if(currentSaver == currentSelectedSaver) then

Note

Most of the objects in the Scripting API have a base class called Object. Objects may have
common properties, one of them being the storage of Attributes. Attributes represent a
serializable state of the tool beyond its actual Inputs.

13

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 isSelected = true

 end

 end

 if isSelected == false then

 currentSaver:SetAttrs({ TOOLB_PassThrough = true })

 end

end

comp:Unlock()

The first and last statement have not been introduced yet.

comp:Lock()

comp:Unlock()

Whenever the composition needs to change its objects or data, you should Lock the composition,
and Unlock it at the end. This guarantees to prevent race conditions, unnecessary redraws but also
suppresses Dialogs, e.g., when a Loader or Saver is added to the Flow.

The following two lines simply return a tuple of all selected Saver and all Savers respectively.

selectedSavers = comp:GetToolList(true, “Saver”)

allSavers = comp:GetToolList(false, “Saver”)

The first loop iterates over all Savers.

The next iteration over each selected Saver compares all the selectedSavers with the currentSaver
of the iteration. Since all the selected Savers are also within the collection of allSavers, we can tell
for sure if the currentSaver has been selected or not.

If it has not been selected, then we set the currentSaver to PassThrough, which is equivalent to
setting the tool to PassThrough in the FlowView.

At the end, we Unlock the composition as mentioned before.

Save the script. Switch to Fusion, create a bunch of Savers. Select few of them and run the script. All
but the selected Savers should be set to PassThrough now.

14

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Fusion has two scripting Languages to choose from: Lua and Python. Both access the same API
through FusionScript so it is up to you which language to choose.

Scripting differs from other APIs available in Fusion. Namely Fuses, Lua scripted plugins that also
may contain OpenCL kernels for GPU based evaluation. Fuses allow creation of tools and filters, a
feature that was originally only possible through the C++ SDK.

Scripting through FusionScript leaves us with two options:

Lua

The Lua programming language is known for its efficiency, speed, and small memory footprint.
Therefore it has been used widely in science and video games.

Fusion ships with Lua 5.1, with some additional libraries build in:

 > IUP - for Graphical user interfaces (compare the chapter Graphical User Interfaces)

 > bmd.scriptlib - A library with common Fusion related helper functions

Lua is a first class citizen in Fusion as it ships with the install. All preferences and compositions are
stored in a Lua table. Fuses are written in Lua and Simple Expressions also consist of a subset of
Lua. Additionally, Fusion uses the LuaJIT (JustInTime) flavour of Lua, which outperforms CPython.
While in regular scripts this may not matter, it is one reason why Fuses can only be written in Lua.

For a complete reference of the language, see the Lua documentation at: http://www.lua.org/
manual/5.1/

Here is the difference of Lua and Python in a nutshell:

 >Member properties are accessed with a dot . Methods are invoked with a colon:

For example:

print(comp.ActiveTool)

print(comp:GetToolList(true))

 > Boolean types are lowercase in Lua (true, false)

 > functions, loops and conditions etc. are closed with an end statement.

 > Lua only knows one collection type called tuple. It can be
used like a Python tuple, list, or dictionary.

 > Fusion has a function buildin called dump() which can be seen as an extension to
print(). It formats the output of tables to be more readable. In the console you
may also start the line with == as short from for dump, e.g., ==comp:GetAttrs()

Scripting Languages

http://www.lua.org/manual/5.1
http://www.lua.org/manual/5.1

15

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Libraries

One of Lua’s benefits is its light weight; Lua does not come with a big standard library. Instead,
libraries and Lua files can be added. Since the FusionScript Lua interpreter is a custom version of
Lua not all native Lua libraries are guaranteed to work with fusion.

Python

Introduction to Python

Python has been adopted quickly for its efficient syntax and language features. Particularly
in the Visual Effects industry, Python resembles a standard for scripting. Most post-production
applications today make use of Python, which is especially beneficial if your goal is to streamline the
production with scripting. Beyond VFX literally thousands of libraries offer Python bindings, making
it possible to access a broad range of tools with a common language.

In order to work in FusionScript the official C-based implementation of Python, sometimes referred
to as CPython, needs to be installed on your system as shown below.

Choice of Version

Python comes as Python version 2 or version 3. The latter was introduced to resolve core issues of
Python, for the cost of backwards compatibility in syntax and features. Compare:

https://wiki.python.org/moin/Python2orPython3

In Fusion, you have the choice to either use Python 2.7 or 3.3. Depending on your task, either use
2.7 (widest range of applications supported) or 3.3 if your pipeline depends on it.

At the time of writing, the recommended VFX reference platform suggests the latest Python 2.7
version, so many facilities may depend on this version.

Documentation

Official documentation of python can be found here:

https://docs.python.org/2.7/

https://docs.python.org/3.3/

https://wiki.python.org/moin/Python2orPython3
https://docs.python.org/2.7
https://docs.python.org/3.3

16

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Installation

Windows

You need to have the latest Python 2.7 or Python 3.3 installed on your system in order to be usable
with Fusion. To match Fusion it needs to be the 64 bit compile.

https://www.python.org/downloads/windows/

During installation, the install option needs to be set to “Install for all users” as shown below:

This way the Python library is installed so that Fusion is able to pick it up during startup. Continue
with the setup below.

Mac OS X

You need to have the latest Python 2.7 or Python 3.3 installed on your system in order to be usable
with Fusion. To match Fusion it needs to be the 64 bit compile.

https://www.python.org/downloads/release/python-2710/

https://www.python.org/downloads/windows
https://www.python.org/downloads/release/python-2710

17

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Setup

After the installation of Python, Fusion needs to be restarted.

As you could have both versions of Python installed, you need to specify the preferred version in
your preferences.

Set the default Version for .py Files and default console at:

 > File Preferences...->Global and Default Settings->Script->Default Python Version

Note

If you need to make sure that your script is run with either Python 2 or Python 3, you can set the
file extension of the script to either .py2 or .py3, respectively.

Note this is a non-standard behavior and will only work within Fusion.

18

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Libraries

In contrast to Lua, Python comes with a complete standard library. As a quick overview, here is a list
of important modules.

 > os (os & file system access)

 > shutil (file system access)

 > glob (file system matching & listing)

 > os.path (os independent path handling)

 > sys (system access)

For a complete list refer to:

https://docs.python.org/2/library/

https://docs.python.org/3.3/library/

Additionally, you can install external libraries either manually or by the eco system accessible
through pip or easyinstall. Some libraries that are useful with Fusion are:

 > slpp (Lua data parser for python)

https://github.com/SirAnthony/slpp

This library makes it easy to parse Lua tables, which most of the data in Fusion consists of.

 > Pillow (Python Imaging Library Fork)

Image manipulation framework

 >Numpy

Mathematical framework

Differences with FusionScript

As already noted Fuses cannot be written in Python.

Also EventScripts, callback scripts for certain events are also only possible with Lua.

Since historically FusionScript was Lua only, some methods that return multiple statements have a
special Table() suffix variant to return the proper table for use in Python.

As the Lua collection is a tuple, you will need to pass a dictionary to the API in many cases, even
when it seems to be treated like a list.

So each Value needs to have a key in the order of the entry.

https://docs.python.org/2/library
https://docs.python.org/3.3/library
https://github.com/SirAnthony/slpp

19

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

For example a list like:

l = [“a”, “b”, “c”]

needs to map to a dictionary

d = {1: “a”, 2: “b”, 3:”c” }

Please note that Lua uses 1 as the first index key of its tuples, not 0. Python dictionaries do not have
a particular order. Only the key indicates their order in this case.

Similarly, all Lua tuples result in dictionaries in Python that need to be parsed into Lists. If order does
not matter, it can be simply done by:

l = d.values()

If order is important their values need to be sorted by their keys before conversion to a list. This can
be achieved with a list comprehension:

l = [item[1] for item in sorted(d.items())]

Choice of Scripting Language

The following list compiles reasons for the use of one or the other language.

Pro Lua:

 > Batteries included - No setup needed

 > Therefore shared scripts will guarantee to work in Fusion without setup

 >More features in Fusion

 > Easier to parse Fusion Tables

 > Lighter and faster

 > Fusion is shipping with many scripts in Lua that can act as examples

Pro Python:

 > Utilization of other Python scripts/apps in the pipeline

 >Most major VFX apps use Python

 > Allows external scripting for cross-app communication (Studio only)

20

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Strong standard library

 > Higher usage & more third party libraries, scripts, and bindings

 > Comes pre-installed in Linux & OSX

The recommendation should always be to stick with the one you know. It makes no sense to learn
a completely new language in most cases if you are already familiar with either Lua or Python,
especially when scripts and libraries exist that you can rely on.

If you are just starting with scripting, you should stick to Lua if all you care for is Fusion, and you want
to make it possible for other artist to utilize your scripts without prior setup. Also the knowledge
gained in scripting will be beneficial for writing custom Fuses.

If you are using other VFX applications that eventually also support Python this might be the better
choice for Fusion as well. The choice can also depend on the standard libraries or a particular third
party library. Research your required environment before making a choice will save you time in
the long run.

Regardless Fusion with its FusionScript API will respect your choice.

Cross-Language Evaluation

Sometimes it is necessary or useful to call in from one language to the other to access certain
features, e.g., you might want to access the Lua function dump from within Python.

With the console set to Py2 execute:

composition.Execute(“dump(comp:GetAttrs())”)

To execute the string as Python from within Lua use:

composition:Execute(“!Py: print(comp.GetAttrs())”)

To target a specific Python version use !Py2: or !Py3:

You may also want to run complete Lua or Python scripts. Use:

composition:RunScript(filePath)

21

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Use either .lua, .py, .py2 or .py3 as file extension for the corresponding interpreter. Similar to the
script menu, .py will execute in the Python interpreter that is installed and set in the preferences.
As RunScript is also available in Python you may run .lua scripts from within Python.

Please note that it is not possible to pass return objects from one language to the other.

Note

The shown scripts are executed in the context of the currently open composition.
Hence, all the evaluation methods are members of the composition object.

composition:Execute(command)

composition:RunScript(filePath)

If you want to execute the scripts in the context of the application, use fusion instead.

fusion:Execute(command)

fusion:RunScript(filePath)

22

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Console

Fusion has a console build-in that outputs print statements in scripts. This is useful for scripts without
a GUI, or as tool for simple debugging.

For example:

 > Lua

print(“Hello World.”)

 > Python

print(“Hello World.”)

print “Hello World.” # This only works with Python 2.x

In all cases, the console will show “Hello World.” If executed from the console, the command will
be mirrored in the console preceding the interpreter: Lua>, Py2> or Py3>

When used with a collection, print will only output the reference to the collection. To display its
content in a preformatted way, use:

 > Lua

dump(comp:GetAttrs())

The same can be achieved in Python with a module called “Data pretty printer” (pprint).

 > Python

from pprint import pprint # Needs to be loaded once

pprint(comp.GetAttrs())

Please note that all the collections coming from FusionScript are essentially Lua tuples. Compare to
the chapter Scripting Languages.

Tip

If used in the console, FusionScript offers a short form of dump for Lua and Python:

==comp:GetAttrs() -- Same as the command above

Scripting and Debugging

23

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Fusion supports different types of scripts based on the context, e.g., you might have a script that
makes changes to the composition, while another script might only act on a certain tool.

Some of these contexts supply different sets of predefined objects. Like a Tool script will expose
the tool it has been applied on as variable.

For better understanding, let us examine important script-contexts:

Interactive Scripts

Interactive scripts are all scripts within Fusion that require a user interaction to run. Most of these
scripts are invoked by the user from the menu.

The contexts available are:

Composition Script

Compositing scripts are the most common type of scripts. They are stored inside the Scripts:/
Comp folder and run from the Scripts Menu. As their name implies their intended context is the
Composition. Therefore, access to the fusion and the composition object is given. Nothing stops
you from implementing functionality that acts on a single selected tool within a Composition script,
but you should consider using a tool script instead. The Menu understands subfolders, so when a
script is placed inside a subfolder, a submenu for that folder will be created.

Tool Script

Tool scripts act on a single tool. They are stored inside the Scripts:/Tool folder and are accessible
and editable from the right-click context menu of the tool’s properties. When invoked, the fusion,
composition, and particular tool objects are available as variable.

Bin Script

Bin scripts are special scripts that act on the contents of a bin. They are stored inside the Scripts:/
Bin folder and are invoked through the context menu of the bin.

For more information about bins, refer to the Fusion User Manual.

Types of Scripts

24

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Utility Script

Utility scripts are those that act on Fusion itself, rather than on a particular Composition. They are
stored inside the Scripts:/Utility folder and can be accessed through the File > Script Menu. The
fusion variable is available by default.

Script Libraries

A scriptlib is a file containing a library of functions that can be used in multiple scripts. Included
with the default installation of Fusion is the bmd.scriptlib, which contains common useful functions.
The scriptlib could have additions in it such as variable declarations (added to the globals table,
for instance). Script Libraries are installed in the root of the scripts directory (by default Scripts:). In
that directory, anything with a .scriptlib extension will be run whenever Fusion is started. In order
to execute a scriptlib when a composition is created or opened, put the scriptlib in the Scripts:/
Comp folder instead. The added benefit of the scriptlib is that you can instruct Fusion to run a set
of code every time a composition is created or opened. The downside to this is that Fusion will
execute the files in the scripts directory in an arbitrary order. This means that any code you write in
the script libraries that is reliant upon other libraries may not work. To get around this, try inserting
the functions that are needed at the top of the scriptlib.

Beyond passing functions into the global environment of the composition, the scriptlib also can be
set up to perform default actions on a composition. It can also be used to create custom events set
up in event suites.

External Scripts

External scripts are run from outside of Fusion but can still access the Fusion instance.

Commandline Scripts

In the install directory of Fusion an application called FuScript is available, which allows to run scripts
directly from the command line.

The mac version is to be found inside the app bundle at Fusion.app/Contents/MacOS/fuscript.

FuScript can execute a .lua script file directly:

FuScript <script> [args]

The passed args can be accessed by the script via arg[1], arg[2] … arg[n], while arg[0] is reserved to
point at the path of the script being executed.

FuScript also has an interactive shell which can be started with:

FuScript -i

25

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

For other uses of FuScript run it without any argument. A list of possible arguments will be printed
to the console.

To connect FuScript to a running instance of Fusion use the following snippet:

fusion = Fusion()

fu = fusion

composition = fu.CurrentComp

comp = composition

SetActiveComp(comp)

From now on, the interactive shell will act like the build in shell in Fusion. By calling

SetActiveComp(comp), the global scope will accept calls to the composition. For example, the
creation of tools like this:

blur = Blur()

This command will create a blur tool on the FlowView of the current open composition.

To run python version 2 or 3 you can specify the language like this:

FuScript <script> [args] -l python2

FuScript <script> [args] -l python3

Events & Callbacks

Events and callbacks get triggered when a certain event has occurred. A predefined callback will
be invoked.

Event Suites

Event suites are installed as callbacks to certain events in Fusion. Install them like a regular scriptlib.
Inside the scriptlib, add the following variable:

ev = AddEventSuite(“Composition”)

This variable has now access to events that occur when certain events are triggered.

26

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Possible events are:

 > OnOpen() -- Triggers every time a file is opened

 > OnSave() -- Triggers every time a comp is saved

 > OnSaveAs() -- Whenever save as is called

 > OnStartRender() -- Whenever a render starts

 > OnEndRender() -- Whenever a render ends

 > OnFrameRendered() -- Whenever a frame is rendered

 > OnTimeChange() -- Whenever the time changes

 > OnActivateTool() -- Whenever a tool is made active

For example: Create a file called PrintSaverPathsOnRender.scriptlib in the Scripts:/Comp folder.
Enter the following content:

globals.ev = AddEventSuite(“Composition”)

function ev:OnStartRender(event)

 local toollist=comp:GetToolList(“Saver”)

 for i, tool in pairs(toollist) do

 print(tool:GetInput(“Clip”))

 end

 self:Default(event)

end

Now start a render with a composition that has at least one Saver with a valid path defined. The
console will print all the paths of the Savers. Although this sample does not add much value, it could
easily be modified to check and manipulate the paths.

Note

Always use self:Default(event) to call the base implementation of the event.

This will allow you to create multiple events with different scriptlibs.

27

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Removing an event suite is accomplished by running the RemoveEventSuite(suite) function. In the
example scenario, the syntax would be:

RemoveEventSuite(ev)

Button Callbacks

Button callbacks are invoked when custom Button Controls within a tool are clicked.

Internally, the Attribute called BTNCS_Execute needs to be set. The easiest way to accomplish this
is by using the UserControls ToolScript. When adding a Button control, a field labeled Execute can
be used to call Lua commands.

The generated button control will end up in the composition as:

UserControls = ordered() {

 PrintHello = {

 LINKID_DataType = “Number”,

 INP_Default = 0,

 BTNCS_Execute = “print(\”Hello\”)”,

 LINKS_Name = “Print Hello”,

 INPID_InputControl = “ButtonControl”,

 },

 },

28

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

When clicked “Hello” will be printed in the console.

Hotkey Script

Hotkey scripts are scripts that can be attached to keyboard shortcuts in a particular context.

By default they are stored in a file called Fusion.hotkeys in the Profile: folder.

InTool Scripts

InTool scripts are special scripts that run on the tool during evaluation of each frame, at the start of
the render or at the end. They are defined directly within the tool and have read access to a limited
set of data through the input’s name—self, composition or comp, and fusion or fu. The limitation is
supposed to prevent infinite loops, race conditions, and performance problems.

For example, you cannot call or change Inputs. If you want change Inputs based on a logic, use
modifiers, expressions, or simple expressions. Also note that changing most of the Inputs in a tool
will trigger a re-rendering and therefore the InTool Frame Render Script is evaluated again.

29

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Simple Expressions

Simple Expressions are a limited subset of the scripting environment directly within each Input of a
tool. They can be used as replacements for the expression modifier, to directly connect and change
incoming Inputs based on calculations.

Fuses

Fuses are Lua scripted plugins that act as regular Tool. They may be multithreaded and contain
OpenCL kernels to process on the GPU. Refer to the dedicated Fuses documentation and reference.

30

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

For a better understanding of FusionScript, it is worth looking under the hood of Fusion’s object
model. Although FusionScript and the following overview is a great simplification of the real
application, it will help us to navigate around the application within the scripting API.

Overview

Fusion is composed of different objects with individual types. One possible object type is an
Operator, also known as Tool. Each Operator might have a couple of Links, being Input or Output
objects, that may be represented in GUI inside the properties view. The reference to the Composition
is also a special object type, as is is Fusion itself. Even FileTypes, which represent file formats that
can be read by a Loader, are objects.

Most objects contain a set of Attributes that represent the state of the object and it capabilities.
Additionally they may contain Data, a special form of metadata.

Each object must be registered in an internal registry with its particular type and function. This
way information about every object or tool can be read from the registry before an instance has
been created.

While we do can access most of the information from the registry, FusionScript deals most of the
time with the instances in the Application, Composition, Tool, Inputs etc.

Common Object Dependencies

This chapter pictures the common object dependencies in Fusion. This means that the users
experiences the relations of objects similar to these dependencies, while the underlying
implementation and exposed object hierarchy may look different.

This is only an excerpt of the most common objects a user is likely to use and may help to picture
the interaction with Fusion from a user’s point of view:

Fusion

 > Composition (collection)

 > Tool (collection)

 > Inputs (collection)

Some being MainInputs = Input connections on the FlowView

 > Type: Sets and gets type

Text

Number

Image

Data3D

Fusion’s Object Model

31

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 >Outputs (collection)

Some being MainOutputs = Output connections on the FlowView

 > Type: Sets and gets type

Text

Number

Image

Data3D

other

While this view is highly simplified and neglects many aspects and features of the interface—like
LUT, Viewers etc.—it is at the core the data that a user deals with most of the time.

Fusion Instance

The starting point for all access is a Fusion object. A Fusion object represents a running Fusion
instance. It can create, open, and close compositions, stores application wide settings and
preferences or persistent metadata. Fusion is able to open and manage multiple compositions from
one Fusion instance. The graphical user interface represents these with a Tab-Layout. In scripting
all currently loaded compositions are accessible with fu:GetCompList(). The currently active
Composition can be accessed via fu.CurrentComp or fu:GetCurrentComp(). To load a composition
use fu:LoadComp(path, locked) or create an empty composition using fu:NewComp(locked,
auto-close, hidden). You can also quit the Fusion instance by using fu:Quit(). If you are running
the script from within Fusion it still will be executed. In reality the script is not bound to the Fusion
instance. Instead a FuScript application is spawned that evaluates the scripts and communicates
to the running Fusion instance. If your script exits, eventually the FuScript instance will also be
stopped. This obviously also applies if running scripts from an external scripting environment as
explained in the earlier chapter.

Composition Instance

A Composition may also store settings, attributes, and persistent metadata. While the Fusion
instance holds Global Settings, each composition may have an individual set of settings. This
behaviour is mimicked in the preferences dialog, where either global settings for each new
composition, or individual settings of currently opened compositions can be changed. Most of
the time the composition settings should be accessed to include the overrides for the current
composition. This includes the PathMapping, which is used to identify paths from Fusion’s relative
path system.

The composition can be Saved and Closed, create Undos, Undo actions, and Redo them and Clear
Undos altogether. Also, playback and rendering can be invoked from a composition.

32

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Please note that you can comp:Lock() a composition, which prevents re-rendering due to changes
and dialog pop-ups until the composition is unlocked again with comp:Unlock(). Use locking
whenever possible if you manipulate the composition. You can query the lock state of a composition
via comp:IsLocked().

Tools on the composition can be queried. A composition can get and set the currently active tool
via comp.ActiveTool and comp:SetActiveTool(tool). All tools within the composition are queried
with comp:GetToolList() while only the selected tools a queried with comp:GetToolList(true).

 Selection of tools is part of the FlowView and can be triggered like this:

flow = comp.CurrentFrame.FlowView

flow:Select(Blur1, true) -- Adds blur1 to the selection

flow:Select(Blur2, false) -- Removes blur2 from the selection

flow:Select() -- Deselects all

Both composition and fusion have GetPrefs() and SetPrefs(), which store the preferences of
Fusion and the local copy of the composition. If you cannot find a particular setting in there, take a
look inside the Attributes as described later on.

Note

Fusion tools can have three selection states: unselected, selected and active & selected .

While the selected tools are the ones drag-selected (indicated by a blue color), the active tool is
the last clicked tool (indicated by a yellow color). Still, an active tool is also automatically selected.

This behaviors enables a finer selection, e.g., when you want to copy one tool’s settings to other
tools, you can drag select all the target tools and then activate the source tool by clicking on it.

33

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Tool Instances

Tools are uniquely named operators of a particular type. Internally a tool is a subset of an Operator
that is visible on the flow. It can be a Creator or Filter, 3D Tool, etc. Another example of Operator is
a Modifier. It is a like a Tool but deals with Number or Text data instead of Image data. Still you can
connect it to Inputs and other Modifiers.

For simplicity, we will talk about Tools most of the time while the techniques may also apply to
different Operator types.

Read access to the name and its type is given with tool.Name and tool.ID. For read and write
access of the name, use the attribute called TOOLS_Name. Note that the attribute TOOLB_NameSet
indicates if the name was manually changed. If not, some tools will show additional information on
the tile next to its name. For example, the loader will show the clip’s filename.

Other important attributes are its PassThrough-State with TOOLB_PassThrough and Lock-State with
TOOLB_Locked.

Similar to the selection state the position of the tool on the FlowView is not part of the tool instance
but of the flow.

flow = comp.CurrentFrame.FlowView

==flow:GetPos(Blur1) -- prints the position of Blur1

==flow:SetPos(Blur1, 5, 1) -- sets the position of Blur1 to x = 5 y = 1

If many tools are repositioned, the shown method will be slow. You can queue re-positioning of
multiple tools and apply it in one batch like this:

-- Repositions all tools in a column

flow = comp.CurrentFrame.FlowView

flow:QueueSetPos()

for i, tool in ipairs(comp:GetToolList()) do

 flow:QueueSetPos(tool, 0, i)

end

flow:FlushSetPosQueue()

Tools have Inputs and Outputs that are discussed in detail next.

34

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

MainInputs and MainOutputs

In general, tools have Inputs and Outputs. Property Inputs—being represented by controls in
the properties view (e.g. the Gain slider in a ColorCorrector)—or the Inputs on the flow view that
connect one tool to the other, so called MainInputs. Outputs are very similar although most of the
time tools only have one MainOutput on the FlowView. An exception being the Stereo Splitter
(Fusion Studio) as shown in the figure.

The distinction if an Input or Output is on the flow is made by defining them as MainInput and
MainOutput during the development of the Plugin or Fuse.

Visible MainInputs can be queried by using tool:FindMainInput(i), while MainOutputs are
available with tool:FindMainOutput(i). As there can be more than one MainInput or MainOutput,
these methods require an argument i starting with 1.

If there is no result for the given index, the method returns nil. The following snippet shows how to
query all MainInputs and MainOutputs of the active tool:

tool = comp.ActiveTool

if(tool ~= nil) then

 print (tool.Name)

 local i = 1

 while(true) do

 out = (tool:FindMainInput(i))

 if out == nil then break end

35

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 print(string.format(“\tMainInput %d: %s”, i, out.Name))

 i = i + 1

 end

 i = 1

 while(true) do

 out = (tool:FindMainOutput(i))

 if out == nil then break end

 print(string.format(“\tMainOutput %d: %s”, i, out.Name))

 i = i + 1

 end

end

Inputs and Outputs

Next to the MainInput and MainOutputs there are other Inputs and Outputs. If Inputs are not hidden
they can be represented as an Input control in the properties view. Still the underlying DataType
might be the same. For example a Number DataType might be accessible through a slider control,
a Checkbox, a DropdownList, a Multibutton etc.

To query the underlying DataType of an Input, use inp:GetAttrs(“INPS_DataType”).

To query the underlying DataType of an Output use outp:GetAttrs(“OUTS_DataType”).

A control allows users to change the corresponding value of the underlying DataType in the
properties view. An optional preview control allows to change the value directly in the Viewer.

In scripting the value on an Input can be changed directly with an assignment, by using an index
that represents a specific time or by using tool:SetInput(“InputName”, value, [time]).

Specifying the time only makes sense the input is animated as shown later. Only simple DataTypes
like integers, float, and strings are supported.

36

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Consider the following example:

Merge1.Angle = 10 -- Sets Angle to 10

Merge1.Angle[5] = 20 -- Sets Angle to 20 on frame 5

Merge1:SetInput(“Angle”, 20, 5) -- Same as above

To get a value of a given Input use:

print(Merge1.Angle) -- Gets the Angle input handle

print(Merge1.Angle[TIME_UNDEFINED]) -- Gets the Angle value

print(Merge1.Angle[5]) -- Gets Angle on frame 5

Merge1:GetInput(“Angle”, 5) -- Same as above

Please note that you cannot use Merge1.Angle to retrieve a value as this will return the Input handle.

Querying Inputs

Like MainInputs on the Flow, Inputs can be connected to other Outputs like Published Inputs,
Animated Inputs, or Modifiers. Although not represented with a FlowView, a similar connection flow
is possible with all Inputs. The main difference being that MainInputs deal with Image data, Masks,
Data3D, Particle Streams while regular Inputs deal with Numbers, Points, and Text etc.

All Inputs, regardless of being MainInputs or not can be listed via tool:GetInputList(). All Outputs
can be listed with tool:GetOutpuList(). In both cases, an optional filter of the DataType can be
specified. Additionally if the name is known the Input and Output can be accessed directly as
property of the tool. If you mouse hover over an Input, the status bar will show the name. E.g. to
access the Gain Input of a BrightnessContrast tool use: BrightnessContrast1.Gain

Connections

An Input can be connected to an Output via the inp:ConnectTo(output) method. It can be disconnected
via inp:ConnectTo(). To get the connected output of an Input use inp:GetConnectedOutput().
Similarly you can get all connected Inputs of an Output with outp:GetConnectedOutputs(). Please
note the plural form of the latter command.

37

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Please note that both Output and Input share the same parent class called Link, which allows them
to access GetTool() to refer to the Tool containing the Input or Output.

Inputs can be connected directly to their underlying DataType but they can also be connected to
other inputs of the same DataType, a modifier or animation. As all of this internally is implemented
as connection, once the upstream Input needs to be evaluated, all of it connected downstream
outputs get queried. This allows for a complex connection scheme with many cross dependencies.

Animation

To animate an Input via script, the first step is to add a BezierSpline. A Bezier Spline is an animation
curve that can be viewed in the spline editor. It is a storehouse for the information contained in the
animated properties of a tool. To do this for a Merge’s blend property, the following code could
be employed:

Merge1.Blend = BezierSpline({})

By setting the input’s value at a specific time, keyframes will be created.

Note

By design, one Output might be connected to multiple Inputs, but one Input can only have one
incoming Output connection.

38

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

If the property is a Point DataType, use the Path{} function instead to add a bezier-based path.

If the desire was to then animate the blend from 1 to 0 over the period of 100 frames, one could use
the following code:

Merge1.Blend[1] = 1

Merge1.Blend[100] = 0

You can request a collection of all keyframes on a BezierSpline:

local spline, splineout, splinedata

-- gets the spline output that is connected to the Blend input,

splineout = Merge1.Blend:GetConnectedOutput()

-- then uses GetTool() to get the Bezier Spline modifier itself, and

if splineout then

 spline = splineout:GetTool()

 -- then uses GetKeyFrames() to get a table of a spline data. This

 splinedata = spline:GetKeyFrames()

 -- data is then dumped.

 dump(splinedata)

end

The data returned consists of a nested table, one for each keyframe and with a key value of the
keyframe’s time. The subtables contain an entry for the keyframe’s value, and optionally, subtables
for the left and/or right handles, called “LH” and “RH.” The handle subtables contain two entries,
for the handle’s X & Y position.

To remove key frames from an animated spline, set the value to nil.

Merge1.Blend[composition.CurrentTime] = nil

39

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

In the above case, the key frame was removed from the comp’s current frame. However, if that key
frame was the only point on an animation spline, the point would not be deleted, as splines must
have at least one point at all times.

The animation can be deleted completely, reverting the Input to a static value.

Instead of specifying the time set the whole Input to nil.

Merge1.Blend = nil

Attributes

Attributes store information about the capabilities of a certain type, as well as some common flags
that contribute to the object’s state.

For example, in the case of a Tool the attributes may include the typename of the object, its name
in the composition, its abbreviation shown in the Toolbar, its PassThrough and selection state, etc.

Attributes have read access but it is not guaranteed that you can change all Attributes. So while it is
possible to change the PassThrough-State of a tool, it makes no sense to change its type.

Each Operator Type will have a different set of Attributes depending on its type. You cannot add
your own Attributes. Instead, use a mechanism like Image stream metadata or Object Data.

In order to access the Attributes, the GetAttrs() method can be used. As it is provided by the
Object superclass, pretty much all objects can have Attributes. So GetAttrs() is a good place to
look for functionality or data within an object.

If no argument is given, all Attributes are returned. It is also possible to supply a single tag string to
narrow down the search.

==Merge1:GetAttrs() -- dump all Tool Attributes

==Merge1.Blend:GetAttrs() -- Inputs also have attributes

==Merge1:GetAttrs(“TOOLB_Locked”) -- Only show the Locked status

The tags consist of a Type prefix, a character for the type, an underline and the Name of
the Attribute. So for example most Attributes within a Tool have a TOOL prefix, Inputs INP,
Compositions COMP etc.

40

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

The type character stands for:

S String

B Boolean

N Number (float)

I Integer

H Handle

NT Number Table

IT Integer Table

ST String Table

BT Boolean Table

In our example, TOOLB_Locked stands for a Tool Attribute of type boolean with the name “Locked.”

Attributes can be changed by using SetAttrs({}). The supplied table is required to have the Tag
as key and the new value as value. Multiple attributes can be changed at a time, however not all
Attributes can be changed at all. The following example renames “Merge1” to “MyMerge” and locks
the tool in one call:

Merge1:SetAttrs({TOOLS_Name = “MyMerge”, TOOLB_Locked = true})

Object Data

Data is a special type of Metadata that is stored within the application preferences or composition.

As opposed to Metadata that is read from an image data stream (e.g., OpenEXR) and is passed
from tool to tool, the Object Data is not passed with the data stream. Instead, it is consistent for the
current state of the application, composition, or tool.

This makes it a perfect candidate for reliably storing states of custom scripts with the composition.

For example, let’s say a custom script with a GUI needs to store its last used path so that the user
does not have to change the path each time the script is being used.

41

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

One option is to create a global variable and check if it is set on each run:

if globals.mytool_lastpath then

 path = mytool_lastpath

else

 path = “default/path”

end

-- ... Dialog with the path

globals.mytool_lastpath = path

However, once Fusion is closed the variable is gone. This strategy only makes sense for data that is
not likely to change from session to session, like a cached list of currently loaded Tools.

But for our scenario, it may be wiser to store each latest path with the fusion preferences so that each
new composition can reference the last used path, even when Fusion is closed and reopened.

local last_path = fusion:GetData(“mytool.lastpath”)

if last_path then

 path = last_path

else

 path = “default/path”

end

-- ... Dialog with the path

fusion:SetData(“mytool.lastpath”, path)

However, another strategy might be to store the data with the composition, so each composition
can have its own path. Simply replace fusion with composition or any other context that makes
sense if your case.

42

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Please note that the dot notation is not random. Dots represent a subtable. So you can put multiple
variables or even other nested tables inside of “mytool.” Use this to your advantage, e.g., to
define a domain wide root name that represents your studio, a sub table with the tools and their
individual settings:

fusion:SetData(“MyStudioInc.MyCompTool.DoMagic”, true)

fusion:SetData(“MyStudioInc.MyRenderSettings.RemoteNames”, “clients”)

...

Where is the actual ObjectData stored?

In the case of the fusion you will find the data in the Fusion8.prefs, at Global.Script.GlobalData.

With Compositions, tools etc. the ObjectData is stored with the respective object in the Composition
file. As all these are Lua-Tables, go ahead and open the .comp file with a text processor. You should
find the Object data you specified.

Metadata

ObjectData is easily confused with regular Image Metadata. However, Image Metadata can only
be read with scripts, but not changed, as it is tied to the Image Stream itself. You will need Fuses or
Plugins to change the Image Stream and its Metadata directly. In order to access it, you will need to
evaluate the Output up to the point where the Metadata was queried.

This is not needed in the case of ObjectData, as it depends on the Object instance and not on its
underlying data stream.

In a Loader with a valid input access is Metadata like this:

==Loader1.Output[comp.CurrentTime].Metadata.Filename

In SimpleExpression, the evaluation is not needed, as it is automatically evaluated at the current
time. For example put this in a text field’s Expression field:

Loader1.Output.Metadata.Filename

Note

A big benefit of Tool ObjectData is that it is stored directly within the Tool. It will be passed on
if the tool is copied and pasted into another composition. However, a newly created tool will
not have any ObjectData, so make sure to catch this default case by an EventSuite or similar.

43

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Although scripts can run in the background and output text to the Console often a graphical user
interface is required. This way the logic of a script can be changed based on options set by the user.
There are two options. For more complex user interfaces, Lua ships with the iup GUI library. Please
refer to the documentation of the library, as its usage is beyond the scope of this document:

http://webserver2.tecgraf.puc-rio.br/iup/

The other option is a build-in dialog called AskUser.

Ask User

A simple way to build and evaluate a dialog is called: comp:AskUser(name, {table of inputs}).

Each input is a table structured as follows :

{Input Name, Input Type, Options ...}

Input Name (string, required)

This name is the index value for the controls value as set by the user (i.e., dialog.Control or
dialog[“Control Name”]). It is also the label shown next to the control in the dialog, unless the
Name option is also provided for the control.

Input Type (string, required)

A string value describing the type of control to display. Valid strings are FileBrowse,PathBrowse,
Position, Slider, Screw, Checkbox, Dropdown, and Text. Each Input type has its own properties and
optional values.

Options (misc)

Different control types accept different options that determine how that control appears and
behaves in the dialog.

All script execution stops until the user responds to the dialog by selecting OK or Cancel.

The returned table contains the responses from the user, or nil if the user canceled the dialog.

Note

This function can only be called interactively, command line scripts cannot use this function.

Graphical User Interfaces

http://webserver2.tecgraf.puc-rio.br/iup

44

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

For example, if you wanted to display a dialog that requested a path from a user, you might use the
following script:

ret = composition:AskUser(“A Sample Dialog”, { {“Select a Directory”, “PathBrowse”} })

dump(ret)

Several of the Options are common to several controls. For example, the name option can be
used with any type of control, and the DisplayedPrecision option can be used with any control that
displays and returns numeric values. The commonly used options for controls are:

 >Name (string)
This option can be used to specify a more reasonable name for this inputs
index in the returned table than the one used as a label for the control.

 > Default (string)
The default value displayed when the control is first shown.

 >Min (integer)
Sets the minimum value allowed by the slider or screw control.

 >Max (numeric)
Sets the maximum value allowed by the slider or screw control.

 > DisplayedPrecision (numeric)
Use this option to set how much precision is used for numeric controls
like sliders, screws and position controls. A value of 2 would allow
two decimal places of precision - i.e., 2.10 instead of 2.105

 > Integer (boolean)
If true the slider or screw control will only allow integer (non decimal) values,
otherwise the slider will provide full precision. Defaults to false if not specified.

45

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Control Types

The following table indicate types of control.

Text Displays the Fusion textedit
control, which is used to enter
large amounts of text into
a control.

Linear (integer)
A number specifying how many lines of text to
display in the control.

Wrap (boolean)
A true or false value that determines whether the
text entered into the control will wrap to the next
line when it reaches the end of the line.

ReadOnly (boolean)
If this option is set to true, the control will not allow
any editing of the text within the control. Used for
displaying non-editable information.

FontName (string)
The name of a truetype font to use when
displaying text in this control.

FontSize (numeric)
A number specifying the font size used to display
the text in this control.

FileBrowse

PathBrowse

ClipBrowse

The FileBrowse input allows
you to browse to select a file
on disk, while the PathBrowse
input allows you to select a
directory. ClipBrowse is used
to get sequences with their
appropriate filters.

Save (boolean)
Set this option to true if the dialog is used to select
a path or file which does not yet exist (i.e.when
selecting a filae to save to)

Slider Displays a standard Fusion slider
control. Labels can be set for the
high and low ends of the slider
using the following options.

LowName (string)
The text label used for the low (left)
end of the slider.

HighName (string)
The text label used for the high (right) end of
the slider.

Checkbox Displays a standard Fusion
checkbox control. You can
display several of these controls,
next to each other using the
NumAcross option

Default (numeric)
The default state of the checkbox, use 0 to leave
the checkbox deselected, or 1 to enabled the
checkbox. Defaults to 0 if not specified.

NumAcross (numeric)
If the NumAcross value is set, the dialog will
reserve space to display two or more checkboxes
next to each other. The NumAcross value must be
set for all checkboxes to be displayed on the same
row. See examples below for more information.

46

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Position Displays a pair of edit boxes
used to enter X & Y coordinates
for a center control or other
position value. The default value
of this control is a table with two
values, one for the X value and
one for the Y. The control returns
a table of values.

Default (table {x,y})
A table with two numeric entries specifying the
value for the x and y coordinates.

Screw Displays the standard Fusion
thumbnail or screw control. This
control is almost identical to
a slider in almost all respects
except that its range is infinite,
and so it is well suited for
angle controls and other values
without practical limits.

Dropdown Displays the standard Fusion
drop down menu for selecting
from a list of options. This
control exposes and option call
Options, which takes a table
containing the values for the
drop down menu. Note that
the index for the Options table
starts at 0, not 1 like is common
in most FusionScript tables. So,
if you wish to set a default for
the first entry in a list, you would
use Default=0, for the second
Default=1, and so on

Default (num)
A number specifying the index of the options table
(below) to use as a default value for the drop down
box when it is created.

Default (table {string, string, string…})
A table of strings describing the values displayed
by the drop down box.

Multibutton Displays a Multibutton,
where each option is drawn
as a button.

The same options are used like
in a Dropdown.

Default (num)
A number specifying the index of the options table
(below) to use as a default value for the drop down
box when it is created.

Options (table {string, string, string…})
A table of strings describing the values displayed
as buttons.

This example shows a dialog that contains most of the various control types:

composition_path = composition:GetAttrs().COMPS_FileName

47

SCRIPTING GUIDE1

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

msg = “This dialog is only an example. It does not actually do anything, “..

 “so you should not expect to see a useful result from running this script.”

d = {}

d[1] = {“File”, Name = “Select A Source File”, “FileBrowse”, Default = composition_path}

d[2] = {“Path”, Name = “New Destination”, “PathBrowse” }

d[3] = {“Copies”, Name = “Number of Copies”, “Slider”, Default = 1.0, Integer = true, Min = 1, Max = 5 }

d[4] = {“Angle”, Name = “Angle”, “Screw”, Default = 180, Min = 0, Max = 360}

d[5] = {“Menu”, Name = “Select One”, “Dropdown”, Options = {“Good”, “Better”, “Best”}, Default = 1}

d[6] = {“Center”, Name = “Center”, “Position”, Default = {0.5, 0.5} }

d[7] = {“Invert”, Name = “Invert”, “Checkbox”, NumAcross = 2 }

d[8] = {“Save”, Name = “Save Settings”, “Checkbox”, NumAcross = 2, Default = 1 }

d[9] = {“Msg”, Name = “Warning”, “Text”, ReadOnly = true, Lines = 5, Wrap = true, Default = msg}

dialog = composition:AskUser(“A Sample Dialog”, d)

if dialog == nil then

 print(“You cancelled the dialog!”)

else

 dump(dialog)

end

Note

In Python, make sure to create a dictionary with proper indices starting
with 1 as explained in the Chapter about Python. For Example:

dialog = {1: {1: “dlgDir”, “Name”: “Select a Directory”, 2: “PathBrowse”},

 2: {1: “dlgDir”, “Name”: “A Check Box”, 2: “Checkbox”, “Default”: 1}}

ret = composition.AskUser(“A simple dialog”, dialog)

2
Scripting Reference

49

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Class Hierarchy 51

Reference 52

BezierSpline 52

BinClip 55

BinItem 55

BinManager 56

BinStill 57

ChildFrame 57

ChildGroup 59

Composition 59

FloatViewFrame 94

FlowView 95

FontList 98

FuFrame 99

Fusion 102

FuView 126

GL3DViewer 127

GLImageViewer 127

GLPreview 129

GLView 129

GLViewer 138

Gradient 141

GraphView 142

HotkeyManager 144

Image 144

ImageCacheManager 146

IOClass 147

KeyFrameView 148

Link 148

List 149

Loader 149

Content

50

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

MailMessage 149

MenuManager 153

Object 153

Operator 153

Parameter 171

PlainInput 172

PlainOutput 179

PolylineMask 181

Preview 182

QueueManager 183

Registry 191

RenderJob 197

RenderSlave 201

ScriptServer 204

SourceOperator 204

TimeRegion 204

TransformMatrix 205

51

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

The following table shows Fusion’s class hierarchy.

Undocumented intermediate objects are indicated by parenthesis.

Class Hierarchy

Object

Registry

ScriptServer

BinItem

BinManager

ChildGroup

Composition

FuFrame

FuView

Fusion

GLViewer

IOClass

ImageCacheManager

(LockableObject)

MailMessage

Operator

Parameter

RenderJob

BinClip
BinStill

FontList
TimeRegion

Loader
(MaskOperator)
SourceOpertor

BezierSpline

GraphView

PlainInput
PlainOutput

ChildFrame
FloatViewFrame

GL3DViewer
GLImageViewer

KeyFrameView

PolylineMask

Preview GLPreview

FlowView
(FuScrollView)
GLView

(Spline)
(ThreadedOperator)

Gradient
Image
TransformMatrix

HotKeyManager
Link
List
MenuManager
QueueManager
RenderSlave

52

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

BezierSpline

class BezierSpline

 Parent class: Spline

 Modifier that represents animation on a number value input.

 Keyframes are interpolated with a bezier spline.

 To animate Points use a Path instead.

 > Python usage:

comp.Merge1.Blend= comp.BezierSpline()

comp.Merge1.Blend[1] = 1

comp.Merge1.Blend[50] = 0

 > Lua usage:

Merge1.Blend = BezierSpline()

Merge1.Blend[1] = 1 -- Add keyframe at frame 1

Merge1.Blend[50] = 0 -- Add keyframe at frame 50

Methods

BezierSpline.AdjustKeyFrames (start, end, x, y, operation[, pivotx][, pivoty])

 Set, Offset or Scale a range of key frames.

 start, end Time range of keypoints to adjust (inclusive)

 x, y Time and Value offsets/factors

 operation Can be “set”, “offset” or “scale” (case sensitive)

 pivotx, pivoty optional values to scale around. Default is zero.

 > Parameters:

start (number) – start

end (number) – end

x (number) – x

y (number) – y

operation (string) – operation

Reference

53

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

pivotx (number) – pivotx

pivoty (number) – pivoty

BezierSpline.DeleteKeyFrames(start[, end])

 Delete key frames.

 > Parameters:

start (number) – start

end (number) – end

BezierSpline.GetKeyFrames()

 Get a table of keyframes.

 While Operator:GetKeyFrames() returns a table of the tool’s valid extent, and
Input:GetKeyFrames() returns a table of the keyframe times for any animation, when
GetKeyFrames() is called from a BezierSpline modifier, it will return a table fully describing
the spline’s curvature.

 The data returned consists of a table of subtables, one for each keyframe and with a key
value of the keyframe’s time. The subtables contain an entry for the keyframe’s value, and
optionally, subtables for the left and/or right handles, keyed by “LH” and “RH”. The handle
subtables contain two entries, for the handle’s X & Y position.

 Returns a table containing information about a spline control’s animation keyframes.

 An example table for a spline with three keyframes follows:

{

 [0.0] = { 2.0, RH = { 12.666667, 2.0 } },

 [38.0] = { 3.86, LH = { 25.333333, 3.666667 }, RH = { 46.0, 4.0 } },

 [62.0] = { 2.5, LH = { 54.0, 2.5 } }

}

 > Python usage:

from pprint import pprint

gets the spline output that is connected to the Blend input

splineout = comp.Merge1.Blend.GetConnectedOutput()

then uses GetTool() to get the Bezier Spline modifier itself, and

54

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

if splineout:

 spline = splineout.GetTool()

then uses GetKeyFrames() to get a table of a spline data.

 splinedata = spline.GetKeyFrames()

 pprint(splinedata)

 > Lua usage:

-- gets the spline output that is connected to the Blend input

splineout = Merge1.Blend:GetConnectedOutput()

-- then uses GetTool() to get the Bezier Spline modifier itself, and

if splineout then

 spline = splineout:GetTool()

-- then uses GetKeyFrames() to get a table of a spline data.

 splinedata = spline:GetKeyFrames()

 dump(splinedata)

end

 > Returns: keyframes

 > Return type: table

BezierSpline.SetKeyFrames(keyframes[, replace])

 Set a table of keyframes.

 This function allows you to set a spline’s keyframes as well as its curvature. The table
should consist of a table of subtables, one for each keyframe, each with a key value of the
keyframe’s time. The subtables should contain an entry for the keyframe’s value, and may
optionally contain subtables for the left and/or right handles, keyed by “LH” and “RH”. The
handle subtables should contain two entries, for the handle’s X & Y position.

 An example table for a spline with three keyframes follows:

55

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

{

 [0.0] = { 2.0, RH = { 12.666667, 2.0 } },

 [38.0] = { 3.86, LH = { 25.333333, 3.666667 }, RH = { 46.0, 4.0 } },

 [62.0] = { 2.5, LH = { 54.0, 2.5 } }

}

 > Parameters:

keyframes (table) – keyframes

replace (boolean) – replace

BinClip

class BinClip

 Parent class: BinItem

Methods
BinClip.CreateStamp()

 Create a stamp for this BinClip.

BinClip.Defragment()

 Defragment this clip.

BinClip.DeleteStamp()

 Delete the stamp for this BinClip.

BinItem

class BinItem

 Parent class: Object

Methods
BinItem.Delete()

 Delete the BinItem.

BinItem.GetData([name])

 Get custom persistent data.

56

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

See Composition:GetData().
 > Parameters:

name (string) – name

 > Returns: Value

 > Return type: (number|string|boolean|table)

BinItem.SetData(name, value)

 Set custom persistent data.

 See Composition:SetData().

 > Parameters:

name (string) – name

value ((number|string|boolean|table)) – value

BinManager

class BinManager

 Parent class: Object

Methods

BinManager.Close()

 Close

BinManager.DeleteSelected()

 DeleteSelected

BinManager.GetRootID()

 GetRootID

BinManager.GetRootLibraryInfo()

 GetRootLibraryInfo

BinManager.GetSelectedIDs()

 GetSelectedIDs

BinManager.IsOpen()

 IsOpen

BinManager.Open()

 Open

BinManager.PlaySelected()

 PlaySelected

57

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

BinManager.Refresh()

 Refresh

BinManager.RenameSelected()

 RenameSelected

BinManager.SetLibraryRoot()

 SetLibraryRoot

BinManager._Library_AddItem()

 _Library_AddItem

BinManager._Library_DeleteItem()

 _Library_DeleteItem

BinManager._Library_Reload()

 _Library_Reload

BinManager._Library_UpdateItem()

 _Library_UpdateItem

BinStill

class BinStill

 Parent class: BinItem

Methods

BinStill.Defragment()

 Defragment this clip.

ChildFrame

class ChildFrame

 Parent class: FuFrame

 Represents the context of the frame window, that contains all the views.

 Usually, there’s just one ChildFrame object for each comp and you can retrieve it via
comp.CurrentFrame.

Methods

ChildFrame.ActivateFrame()

 Activates this frame window.

58

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

ChildFrame.ActivateNextFrame()

 Activates the next frame window.

ChildFrame.ActivatePrevFrame()

 Activates the previous frame window.

ChildFrame.GetControlViewList()

 Returns the list of views from the Controls tabs.

 > Python usage:

list = comp.CurrentFrame.GetControlViewList()

 > Lua usage:

list = comp.CurrentFrame:GetControlViewList()

 > Returns: views

 > Return type: table

ChildFrame.GetMainViewList()

 Returns the list of views from the Main tabs.

 > Returns: views

 > Return type: table

ChildFrame.GetViewLayout()

 Retrieves the current view layout.

 > Returns: layout

 > Return type: table

ChildFrame.SetViewLayout(layout)

 Sets the current view layout from a table.

 > Parameters:

layout (table) – layout

 > Returns: success

 > Return type: boolean

ChildFrame.SwitchControlView(id)

 Displays a given view from the Control tabs.

 > Parameters:

id (string) – id

59

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

ChildFrame.SwitchMainView(id)

 Displays a given view from the Main tabs.

 > Parameters:

id (string) – id

ChildGroup

class ChildGroup

 Parent class: Object

Methods

ChildGroup.GetID()

 GetID

ChildGroup.GetOwner()

 GetOwner

Composition

class Composition

 Parent class: Object

 Represents an composition.

 The Composition object’s methods and members are directly available in the console and
in comp scripts written in Lua. This means that you can simply type ==CurrentTime or call
AddTool(“Blur”) without the need to prefix the command with comp. Python scripts have
to use the full name.

Composition Attributes

Attribute Name Type Description

COMPN_CurrentTime number This is the current time that the composition
is at. This is the time that the user will see,
and any modifications that do not specify a
time will set a keyframe at this time.

COMPB_HiQ boolean Indicates if the composition is currently in
‘HiQ’ mode or not.

60

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Attribute Name Type Description

COMPB_Proxy boolean Indicates if the composition is currently in
‘Proxy’ mode or not.

COMPB_Rendering integer Indicates if the composition is currently
rendering.

COMPN_RenderStart number The render start time of the composition.
A render with no start specified will begin from
this time.

COMPN_RenderEnd number The render end time of the composition.
A render with no end specified will render this
frame last.

COMPN_GlobalStart number The global start time of the comp. This is the
start of time at which the composition is valid.
Anything before this cannot be rendered or
evaluated.

COMPN_GlobalEnd number The global end time of the composition. This is
the end of time at which the comp is valid.
Anything after this cannot be rendered or
evaluated.

COMPN_LastFrameRendered number The most recent frame that has been
successfully completed during a render.

COMPN_LastFrameTime number The amount of time taken to render the most
recently completed frame, in seconds.

COMPN_AverageFrameTime number The average amount of time taken to render
each frame to this point of the render,
in seconds.

COMPN_TimeRemaining number An estimation of how much more time will be
needed to complete this render, in seconds.

COMPS_FileName string The full path and name of the composition file.

COMPS_Name string The name of the composition.

COMPI_RenderFlags integer The flags specified for the current render.

COMPI_RenderStep integer The step value being used for the
current render.

COMPB_Locked boolean This indicates if the composition is
currently locked.

61

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Members

Composition.ActiveTool

 Represents the currently active tool on this comp (read-only).

 > Getting:

tool = Composition.ActiveTool – (Tool)

Composition.AutoPos

 Enable autoupdating of XPos/YPos when adding tools.

 > Getting:

val = Composition.AutoPos – (boolean)

 > Setting:

Composition.AutoPos = val – (boolean)

Composition.CurrentFrame

 Represents the currently active frame for this composition (read-only).

 Do not confuse with CurrentTime.

 > Getting:

frame = Composition.CurrentFrame – (FuFrame)

Composition.CurrentTime

 The current time position for this composition.

 > Getting:

val = Composition.CurrentTime – (number)

 > Setting:

Composition.CurrentTime = val – (number)

Composition.UpdateMode()

 Represents the Some/All/None mode.

Composition.XPos

 The X coordinate on the flow of the next added tool.

 > Getting:

val = Composition.XPos – (number)

 > Setting:

Composition.XPos = val – (number)

62

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Composition.YPos

 The Y coordinate on the flow of the next added tool.

 > Getting:

val = Composition.YPos – (number)

 > Setting:

Composition.YPos = val – (number)

Methods
Composition.AbortRender()

 Stops any current rendering.

Composition.AbortRenderUI()

 Asks the user before aborting the render.

Composition.AddTool(id[, defsettings][, xpos][, ypos])

 Adds a tool type at a specified position.

id the RegID of the tool to add.

 defsettings specifies whether user-modified default settings should
be applied for the new tool (true) or not (false, default).

xpos the X position of the tool in the flow view.

ypos the Y position of the tool in the flow view.

 You can use the number -32768 (the smallest negative value of a 16-bit integer) for both
x and y position. This will cause Fusion to add the tool as if you had clicked on one of
the toolbar icons. The tool will be positioned next to the currently selected one and a
connection will automatically be made if possible. If no tool is selected then the last
clicked position on the flow will be used. The same behaviour can be achieved with the
comp:AddToolAction method.

 Returns a tool handle that can be used to control the newly added tool.

 > Python usage:

bg = comp.AddTool(“Background”, 1, 1)

mg = comp.AddTool(“Merge”, -32768, -32768)

 > Lua usage:

bg = comp:AddTool(“Background”, 1, 1)

mg = comp:AddTool(“Merge”, -32768, -32768)

63

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Parameters:

id (string) – id

defsettings (boolean) – defsettings

xpos (number) – xpos

ypos (number) – ypos

 > Returns: tool

 > Return type: Tool

Composition.AddToolAction(id[, xpos][, ypos])

 Adds a tool to the comp.

 If no positions are given it will cause Fusion to add the tool as if you had clicked on one
of the toolbar icons. The tool will be positioned next to the currently selected one and a
connection will automatically be made if possible. If no tool is selected then the last clicked
position on the flow will be used.

 > Parameters:

id (string) – id

xpos (number) – xpos

ypos (number) – ypos

 > Returns: tool

 > Return type: Tool

Composition.AskRenderSettings()

 Show the Render Settings dialog.

Composition.AskUser(title, controls)

 Present a custom dialog to the user, and return selected values.

 The AskUser function displays a dialog to the user, requesting input using a variety of
common fusion controls such as sliders, menus and textboxes. All script execution stops
until the user responds to the dialog by selecting OK or Cancel. This function can only be
called interactively, command line scripts cannot use this function.

 The second argument of this function recieves a table of inputs describing which controls
to display. Each entry in the table is another table describing the control and its options.
For example, if you wanted to display a dialog that requested a path from a user, you might
use the following script.

 Returns a table containing the responses from the user, or nil if the user cancels the dialog.

Input Name (string, required)

 This name is the index value for the controls value as set by the user (i.e. dialog.Control or
dialog[“Control Name”]). It is also the label shown next to the control in the dialog, unless
the Name option is also provided for the control.

64

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Input Type (string, required)

 A string value describing the type of control to display. Valid strings are FileBrowse,PathBrowse,
Position, Slider, Screw, Checkbox, Dropdown, and Text. Each Input type has its own
properties and optional values, which are described below.

Options (misc)

 Different control types accept different options that determine how that control appears
and behaves in the dialog.

AskUser Inputs

Input Type Description Options

 Several of the Options are
common to several controls.
For example, the name
option can be used with
any type of control, and the
DisplayedPrecision option
can be used with any control
that displays and returns
numeric values.

Name (string)
This option can be used to specify a more
reasonable name for this inputs index in
the returned table than the one used as a
label for the control.
Default (various)
The default value displayed when the
control is first shown.
Min (integer)
Sets the minimum value allowed by the
slider or screw control.
Max (numeric)
Sets the maximum value allowed by the
slider or screw control.
DisplayedPrecision (numeric)
Use this option to set how much precision
is used for numeric controls like sliders,
screws and position controls. A value
of 2 would allow two decimal places of
precision - i.e. 2.10 instead of 2.105
Integer (boolean)
If true the slider or screw control will
only allow integer (non decimal) values,
otherwise the slider will provide full
precision. Defaults to false if not specified.

FileBrowse
PathBrowse
ClipBrowse

The FileBrowse input allows
you to browse to select a file on
disk, while the PathBrowse input
allows you to select a directory.

Save (boolean)
Set this option to true if the dialog is used
to select a path or file which does not yet
exist (i.e. when selecting a file to save to)

65

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Input Type Description Options

Screw Displays the standard Fusion
thumbwheel or screw control.
This control is identical to a
slider in almost all respects
except that its range is infinite,
and so it is well suited for
angle controls and other values
without practical limits.

Text Displays the Fusion textedit
control, which is used to enter
large amounts of Text into
a control.

Lines (integer)
A number specifying how many lines of
text to display in the control.

Wrap (boolean)
A true or false value that determines
whether the text entered into this control
will wrap to the next line when it reaches
the end of the line.

ReadOnly (boolean)
If this option is set to true the control will
not allow any editing of the text within the
control. Use for displaying non-editable
information.

FontName (string)
The name of a true type font to use when
displaying text in this control.

FontSize (numeric)
A number specifying the font size used to
display the text in this control.

Slider Displays a standard Fusion slider
control. Labels can be set for the
high and low ends of the slider
using the following options.

LowName (string)
The text label used for the low (left) end of
the slider.

HighName (string)
The text label used for the high (right) end
of the slider.

66

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Input Type Description Options

Checkbox Displays a Fusion standard
checkbox control. You can
display several of these controls
next to each other using the
NumAcross option.

Default (numeric)
The default state for the checkbox, use 0
to leave the checkbox deselected, or 1 to
enable the checkbox. Defaults to 0 if not
specified.

NumAcross (numeric)
If the NumAcross value is set the dialog
will reserve space to display two or
more checkboxes next to each other.
The NumAcross value must be set for
all checkboxes to be displayed on the
same row. See examples below for more
information.

Position Displays a pair of edit boxes
used to enter X & Y co-ordinates
for a center control or other
positional value. The default
value for this control is a table
with two values, one for the X
value and one for the Y value.
This control returns a table
of values.

Default (table {x,y})
A table with two numeric entries
specifying the value for the x and y
co-ordinates.

Dropdown
Multibutton

Displays the standard Fusion
drop down menu for selecting
from a list of options. This
control exposes an option called
Options which takes a table
containing the values for the
drop down menu. Note that
the index for the Options table
starts at 0, not 1 like is common
in most tables. So if you wish to
set a default for the first entry
in a list, you would use Default
= 0, for the second Default = 1,
and so on.

Default (num)
A number specifying the index of the
options table (below) to use as a default
value for the drop down box when it
is created.

Options (table {string, string, string,...})

A table of strings describing the values
displayed by the drop down box.

67

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Python usage:

In Python make sure to create a dictionary with proper indices starting with 1

dialog = {1: {1: “dlgDir”, “Name”: “Select a Directory”, 2: “PathBrowse”},

 2: {1: “dlgCheck”, “Name”: “A Check Box”, 2: “Checkbox”, “Default”: 1}}

ret = composition.AskUser(“A sample dialog”, dialog)

 > Lua usage:

composition_path = composition:GetAttrs().COMPS_FileName

msg = “This dialog is only an example. It does not actually do anything, “..

 “so you should not expect to see a useful result from running this script.”

d = {}

d[1] = {“File”, Name = “Select A Source File”, “FileBrowse”, Default = composition_path}

d[2] = {“Path”, Name = “New Destination”, “PathBrowse” }

d[3] = {“Copies”,Name = “Number of Copies”, “Slider”, Default = 1.0, Integer = true,

 Min = 1, Max = 5 }

d[4] = {“Angle”, Name = “Angle”, “Screw”, Default = 180, Min = 0, Max = 360}

d[5] = {“Menu”, Name = “Select One”, “Dropdown”, Options = {“Good”, “Better”, “Best”},

 Default = 1}

d[6] = {“Center”,Name = “Center”, “Position”, Default = {0.5, 0.5} }

d[7] = {“Invert”,Name = “Invert”, “Checkbox”, NumAcross = 2 }

d[8] = {“Save”, Name = “Save Settings”, “Checkbox”, NumAcross = 2, Default = 1 }

d[9] = {“Msg”, Name = “Warning”, “Text”, ReadOnly = true, Lines = 5, Wrap = true,

 Default = msg}

dialog = composition:AskUser(“A Sample Dialog”, d)

if dialog == nil then

 print(“You cancelled the dialog!”)

else

 dump(dialog)

end

68

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Parameters:

title (string) – title

controls (table) – controls

 > Returns: results

 > Return type: table

Composition.ChooseTool(path)

 Displays a dialog with a list of selectable tools.

 Returns the RegID of the selected tool or nil if the dialog was canceled.

 > Parameters:

path (string) – path

 > Returns: ID

 > Return type: string

Composition.ClearUndo()

 Clears the undo/redo history for the composition.

Composition.Close()

 The Close function is used to close a composition. The Fusion Composition object that
calls the function will then be set to nil.

 If the comp is in locked mode, then the Close function will not attempt to save the comp,
whether the comp has been modified or not since its last save. If modifications have been
made that should be kept, call the Save() function first.

 If the comp is unlocked, it will ask if the comp should be saved before closing.

 Returns true if the composition was successfully closed, nil if the composition failed to close.

Composition.Copy()

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Copy tools to the Clipboard.

 Accepts no parameters (currently selected tools), a tool or a list of tools.

 Returns true if successful, else false.

 > Returns: success

 > Return type: boolean

Composition.Copy(tool)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Copy tools to the Clipboard.

 Accepts no parameters (currently selected tools), a tool or a list of tools.

69

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 Returns true if successful, else false.

 > Parameters:

tool (Tool) – tool

 > Returns: success

 > Return type: boolean

Composition.Copy(toollist)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Copy tools to the Clipboard.

 Accepts no parameters (currently selected tools), a tool or a list of tools.

 Returns true if successful, else false.

 > Parameters:

toollist (table) – toollist

 > Returns: success

 > Return type: boolean

Composition.CopySettings()

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Copy a tools to a settings table.

 Accepts no parameters (currently selected tools), a tool or a list of tools.

 Returns the toollist as settings table.

 > Returns: ettings

 > Return type: table

Composition.CopySettings(tool)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Copy a tools to a settings table.

 Accepts no parameters (currently selected tools), a tool or a list of tools.

 Returns the toollist as settings table.

 > Parameters:

tool (Tool) – tool

 > Returns: settings

 > Return type: table

Composition.CopySettings(toollist)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Copy a tools to a settings table.

70

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 Accepts no parameters (currently selected tools), a tool or a list of tools.

 Returns the toollist as settings table.

 > Parameters:

toollist (table) – toollist

 > Returns: settings

 > Return type: table

Composition.DisableSelectedTools()

 Pass-through the selected tools.

Composition.EndUndo(keep)

 The StartUndo() function is always paired with an EndUndo() function. Any changes made
to the composition by the lines of script between StartUndo() and EndUndo() are stored as
a single Undo event.

 Changes captured in the undo event can be undone from the GUI using CTRL-Z, or the Edit
menu. They can also be undone from script, by calling the Undo function. keep determines
whether the captured undo event is to kept or discarded. Specifying ‘true’ results in the
undo event being added to the undo stack, and appearing in the appropriate menu.
Specifying ‘false’ will result in no undo event being created. This should be used sparingly,
as the user (or script) will have no way to undo the preceding commands.

 If the script exits before the EndUndo() is called Fusion will automatically close the
undo event.

 > Python usage:

composition.StartUndo(“Add some tools”)

bg1 = comp.Background()

pl1 = comp.Plasma()

mg1 = comp.Merge({ “Background”: bg1, “Foreground”: pl1 })

composition.EndUndo(True)

 > Lua usage:

composition:StartUndo(“Add some tools”)

bg1 = Background{}

pl1 = Plasma{}

mg1 = Merge{ Background = bg1, Foreground = pl1 }

composition:EndUndo(true)

71

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Parameters:

keep (boolean) – keep

Composition.Execute()

 Executes a script string for the composition. To execute a script in the context of fusion use
fusion:Execute(...) instead.

 By default Lua is used as interpreter. To use python prepend the following prefix:

 !Py: default Python version. !Py2: Python version 2. !Py3: Python version 3.

 > Python usage:

comp.Execute(“print(‘Hello from Lua!’)”)

comp.Execute(“!Py: print(‘Hello from default Python!’)”)

comp.Execute(“!Py2: print ‘Hello from Python 2!’”)

comp.Execute(“!Py3: print (‘Hello from Python 3!’)”)

 > Lua usage:

comp:Execute(“print(‘Hello from Lua!’)”)

comp:Execute(“!Py: print(‘Hello from default Python!’)”)

comp:Execute(“!Py2: print ‘Hello from Python 2!’”)

comp:Execute(“!Py3: print (‘Hello from Python 3!’)”)

Composition.FindTool(name)

 Finds first tool by name.

 > Parameters:

name (string) – name

 > Returns: tool

 > Return type: Tool

Composition.FindToolByID(id[, prev])

 Finds first tool of a given type.

 Returns only the first found tool.

 To find the next tool use the prev parameter to supply the previous tool.

72

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Python usage:

Create three Blur tools

blur1 = comp.Blur()

blur2 = comp.Blur()

blur3 = comp.Blur()

print (comp.FindToolByID(“Blur”).Name)

Prints: Blur1

print (comp.FindToolByID(“Blur”, blur1).Name)

Prints: Blur2

print (comp.FindToolByID(“Blur”, blur2).Name)

Prints: Blur3

 > Lua usage:

-- Create three Blur tools

blur1 = Blur

blur2 = Blur

blur3 = Blur

print (comp:FindToolByID(“Blur”).Name)

-- Prints: Blur1

print (comp:FindToolByID(“Blur”, blur1).Name)

-- Prints: Blur2

print (comp:FindToolByID(“Blur”, blur2).Name)

-- Prints: Blur3

 > Parameters:

id (string) – id

prev (Tool) – prev

 > Returns: tool

 > Return type: Tool

73

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Composition.GetCompPathMap([built_ins][, defaults])

 Returns a table of all Composition path maps.

 build_ins If set build-in (read-only) PathMaps will be returned.

 defaults If set the default PathMaps will be returned, else excluded.

 > Python usage:

Returns custom PathMaps

==comp.GetCompPathMap(False, False)

Show all, same as true, true

==comp.GetCompPathMap()

 > Lua usage:

-- Returns custom PathMaps

==comp:GetCompPathMap(false, false)

-- Show all, same as true, true

==comp:GetCompPathMap()

 > Parameters:

built_ins (boolean) – built_ins

defaults (boolean) – defaults

 > Returns: map

 > Return type: table

Composition.GetConsoleHistory()

 This function is useful for getting all information displayed in the console between two
points. Could be used to search for warnings or errors generated by previous scripts.

 Returns a table with the history of the console between two points. If endSeq is omitted,
the startSeq the console sequence number that the script will start reading from.

 endSeq the console sequence number that the script will stop reading at.

 script gets all history starting from the variable passed into startSeq. If both values are
omitted, returns a general table about the history of the console (number of lines, etc.) If no
parameters are given the total number of lines will be returned in the Total key.

74

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Lua usage:

-- Get the total number of console lines

dump(composition:GetConsoleHistory().Total)

-- Get the console history lines 1 and 2

dump(composition:GetConsoleHistory(1, 2))

Composition.GetData([name])

 Get custom persistent data.

 name name of the data. This name can be in “table.subtable” format, to allow persistent
data to be stored within subtables.

 Persistent data is a very useful way to store names, dates, filenames, notes, flags, or anything
else, in such a way that they are permanently associated with this instance of the object,
and are stored along with the object using SetData(), and can be retrieved at any time with
GetData().

 The method of storage varies by object: SetData() called on the Fusion app itself will
save its data in the Fusion.prefs file, and will be available whenever that copy of Fusion is
running. Calling SetData() on any object associated with a Composition will cause the data
to be saved in the .comp file, or in any settings files that may be saved directly from that
object. Some ephemeral objects that are not associated with any composition and are not
otherwise saved in any way, may not have their data permanently stored at all, and the data
will only persist as long as the object itself does.

 Returns a value that has been fetched from the object’s persistent data. It can be of
almost any type.

 > Python usage:

from datetime import datetime

tool = comp.ActiveTool

tool.SetData(“Modified.Author”, fusion.GetEnv(“USERNAME”))

tool.SetData(“Modified.Date”, str(datetime.now()))

author = tool.GetData(“Modified.Author”)

dt = tool.GetData(“Modified.Date”)

print(“Last modified by {0} on {1}”.format(author, dt))

75

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Lua usage:

tool = tool or comp.ActiveTool

tool:SetData(“Modified.Author”, fusion:GetEnv(“USERNAME”))

tool:SetData(“Modified.Date”, os.date())

author = tool:GetData(“Modified.Author”)

dt = tool:GetData(“Modified.Date”)

print(“Last modified by” ..author.. “ on ” ..dt)

 > Parameters:

name (string) – name

 > Returns: value

 > Return type: (number|string|boolean|table)

Composition.GetFrameList()

 Retrieves a table of the comp’s ChildFrames.

 ChildFrames are the windowed workspace of Fusion. This function allows the user to access
each of the available ChildFrame window objects, and their views.

 > Python usage:

windowlist = composition.GetFrameList()

tool = comp.ActiveTool

for window in windowlist.values():

 window.ViewOn(tool, 1)

 > Lua usage:

windowlist = composition:GetFrameList()

tool = comp.ActiveTool

for i, window in pairs(windowlist) do

 window:ViewOn(tool, 1)

end

76

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Composition.GetNextKeyTime([time][, tool])

 Returns the keyframe time of the next keyframe.

 It can be used to either check for a keyframe among all tools in the composition, or for a
specified tool only.

 time The source time for the search.

tool If set keyframes only for the tool will be returned.

 > Parameters:

time (number) – time

tool (Tool) – tool

 > Returns: time

 > Return type: number

Composition.GetPrefs([prefname][, exclude-defaults])

 Retrieves a table of comp-specific preferences, or a single value.

 prefname The name of the specific preference to be retrieved. Use dots to indicate
subtables. If no prefname or nil is specified, a table of all the preferences is returned.

 exclude-defaults Do not include preferences with defaults if true

 This function is useful for getting the full table of preferences for a Composition, or a
subtable, or a specific value.

 > Python usage:

from pprint import pprint

All preferences

pprint(comp.GetPrefs())

A sepcific preference

pprint(comp.GetPrefs(“Comp.AutoSave.Enabled”))

All but default preferences

pprint(comp.GetPrefs(None, False))

77

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Lua usage:

-- All preferences

dump(comp:GetPrefs())

-- A sepcific preference

dump(comp:GetPrefs(“Comp.AutoSave.Enabled”))

-- All but default preferences

dump(comp:GetPrefs(nil, false))

 > Parameters:

prefname (string) – prefname

exclude-defaults (boolean) – exclude-defaults

 > Returns: prefs

 > Return type: table

Composition.GetPrevKeyTime([time][, tool])

 Returns the keyframe time of the previous keyframe.

 It can be used to either check for a keyframe among all tools in the composition, or for a
specified tool only.

 time The source time for the search.

 tool If set keyframes only for the tool will be returned.

 > Parameters:

time (number) – time

tool (Tool) – tool

 > Returns: time

 > Return type: number

Composition.GetPreviewList([include_globals])

 Retrieves a table of previews.

 The GetPreviewList function is used to determine what views are available for a flow or for
Fusion. The object itself is a View object that can then be passed on to the various functions
that affect views in Fusion.

 Returns a table of all available views for a composition. For floating views use the
fusion:GetPreviewList function instead.

78

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Parameters:

include_globals (boolean) – include_globals

 > Returns: previews

 > Return type: table

Composition.GetToolList([selected][, regid])

 Returns a table of all tools or selected tools.

 selected If the selected argument is set to true then GetToolList returns a list of handles
to the selected tools in the composition. If no tools are selected then the table returned is
nil. If the selected argument is false, or empty then a table with handles to all tools in the
composition are returned.

 regid This string value will limit the return of the GetToolList function to tools of a specific
type (this type is related to the TOOLS_RegID attribute).

 > Python usage:

from pprint import pprint

outputs the name of every tool in the composition

pprint(composition.GetToolList())

Get all selected tools

pprint(composition.GetToolList(True))

Get all loaders

pprint(comp.GetToolList(False, “Loader”))

 > Lua usage:

-- outputs the name of every tool in the composition

dump(composition:GetToolList())

-- Get all selected tools

dump(composition:GetToolList(true))

-- Get all loaders

dump(comp:GetToolList(false, “Loader”))

79

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Parameters:

selected (boolean) – selected

regid (string) – regid

 > Returns: tools

 > Return type: table

Composition.GetViewList()

 Returns all the view in the composition.

Composition.Heartbeat()

 Heartbeat

Composition.IsLocked()

 Returns true if popups and updates are disabled.

 Use this function to see whether a composition is locked or not.

 Returns a boolean with the locked status of the comp.

 > Returns: locked

 > Return type: boolean

Composition.IsPlaying()

 Returns true if the comp is being played.

 > Returns: playing

 > Return type: boolean

Composition.IsRendering()

 Returns true if the comp is busy rendering.

 It will return true if it is playing, rendering, or just rendering a tool after trying to view it.

 This is equal to the state of COMPB_Rendering composition attribute.

 > Returns: rendering

 > Return type: boolean

Composition.Lock()

 Lock the composition from updating.

 The Lock() function sets a composition to non-interactive (“batch”, or locked) mode. This
makes Fusion suppress any dialog boxes which may appear, and additionally prevents any
re-rendering in response to changes to the controls. A locked composition can be unlocked
with the Unlock() function, which returns the composition to interactive mode.

 It is often useful to surround a script with Lock() and Unlock(), especially when adding tools
or modifying a composition. Doing this ensures Fusion won’t pop up a dialog to ask for user
input, e.g. when adding a Loader, and can also speed up the operation of the script since
no time will be spent rendering until the comp is unlocked.

80

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Python usage:

comp.Lock()

Will not open the file dialog, since the composition is locked

my_loader = comp.Loader()

comp.Unlock()

 > Lua usage:

comp:Lock()

-- Will not open the file dialog, since the composition is locked

my_loader = Loader()

comp:Unlock()

Composition.Loop(enable)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Enables looping interactive playback.

 This function is used to turn on the loop control in the playback controls of the composition.

 > Parameters:

enable (boolean) – enable

Composition.Loop(mode)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Enables looping interactive playback.

 This function is used to turn on the loop control in the playback controls of the composition.

 > Parameters:

mode (string) – mode

Composition.MapPath(path)

 Expands path mappings in a path string.

 Retruns a file or directory path with all path maps expanded into their literal path
equivalents.

81

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 There are a number of default and user-specified path maps within Fusion that are intended
to provide convenient ways to access common locations, or for flexibility in scripting. These
can be any string, but often end in a colon, e.g. Fusion:, Comp:. They are expanded into a
literal path as specified by the Path Maps preferences page.

 However, many Fusion functions (and all Lua functions) require strictly literal paths. MapPath()
can be used to easily convert any path map into a fully-expanded literal path. If there is no
path map at the beginning of the path, MapPath() will just return the unchanged path.

 In addition to expanding all global path maps like Fusion:MapPath(), Composition:MapPath()
will also expand any path maps listed in the composition’s Path Map preferences, and the
following built-in defaults.

 For multiple directories use MapPathSegments().

 > Python usage:

print(composition.MapPath(“Comp:footage\\file0000.tga”))

 > Lua usage:

print(composition:MapPath(“Comp:footage\\file0000.tga”))

 > Parameters:

path (string) – path

 > Returns: mapped

 > Return type: string

Composition.MapPathSegments(path)

 Expands all path mappings in a multipath.

 MapPathSegments is similar to MapPath but works with strings that contain multiple
directories. The return value is a table with all expanded paths while MapPath only expands
the first segment and discards the rest.

 > Python usage:

from pprint import pprint

pprint(comp.MapPathSegments(“AllDocs:Settings;Fusion:Settings”))

82

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Returns

{1.0: ‘C:\\Users\\Public\\Documents\\Blackmagic Design\\Fusion\\Settings’,

2.0: ‘C:\\Program Files\\Blackmagic Design\\Fusion 8\\Settings’}

 > Lua usage:

dump(comp:MapPathSegments(“AllDocs:Settings;Fusion:Settings”))

-- Returns table: 0x03800440

-- 1 = C:\Users\Public\Documents\Blackmagic Design\Fusion\Settings

-- 2 = C:\Program Files\Blackmagic Design\Fusion 8\Settings

 > Parameters:

path (string) – path

 > Returns: mapped

 > Return type: table

Composition.NetRenderAbort()

 NetRenderAbort

Composition.NetRenderEnd()

 NetRenderEnd

Composition.NetRenderStart()

 NetRenderStart

Composition.NetRenderTime()

 NetRenderTime

Composition.Paste([settings])

 Pastes a tool from the Clipboard or a settings table.

 settings if not supplied the Clipboard will be used.

 > Parameters:

settings (table) – settings

 > Returns: success

 > Return type: boolean

83

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Composition.Play([reverse])

 Starts interactive playback.

 This function is used to turn on the play control in the playback controls of the composition.

 reverse Play in reverse direction.

 > Parameters:

reverse (boolean) – reverse

Composition.Print()

 Print in the context of the composition.

 Useful to print to a console of a different composition.

 > Python usage:

new_comp = fu.NewComp()

new_comp.Print(“Hello World”)

 > Lua usage:

new_comp = fu:NewComp()

new_comp:Print(“Hello World”)

Composition.Redo(count)

 Redo one or more changes to the composition.

 The Redo function reverses the last undo event in Fusion.

 Note that the value of count can be negative, in which case Redo will behave as an Undo,
acting exactly as the Undo() function does.

 count specifies how many redo events to trigger.

 > Parameters:

count (number) – count

Composition.Render([wait][, start][, end][, proxy][, hiq][, motionblur])

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Start a render.

 The Render function starts rendering the current composition. There are two forms for
calling this function, one where the arguments are passed directly, and a second form
where all the arguments are passed in a table. The table format is useful for declaring non-
contiguos render ranges, such as the following one.

84

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 Returns true if the composition rendered successfully, nil if it failed to start or complete
the render.

Arguments

 wait_for_render a true or false value indicating whether the script should wait for the
render to complete, or continue processing once the render has begun.

 renderstart the frame to start rendering at.

 renderend the frame to stop rendering at.

 step render 1 out of x frames. For example, a value of 2 here would render every
second frame.

 proxy scale all frames down by this factor, for faster rendering.

 hiQ do high-quality rendering (defaults to true, if not specified).

 mblur calculate motion-blur when rendering (defaults to true, if not specified)

Table form

 The table entries should be one or more of the following:

Start First frame to render. Default: Comp’s render end setting.

End Final frame to render (inclusive). Default: Comp’s render end setting.

HiQ Render in HiQ. Default true.

RenderAll Render all tools, even if not required by a saver. Default false.

MotionBlur Do motion blur in render, where specified in tools. Default true.

SizeType Resizes the output:

-1 Custom (only used by PreviewSavers during a preview render)

0 Use prefs setting

1 Full Size (default)

2 Half Size

3 Third Size

4 Quarter Size

 Width Width of result when doing a Custom preview (defaults to pref).

 Height Height of result when doing a Custom preview (defaults to pref).

 KeepAspect Maintains the frame aspect when doing a Custom preview. Defaults to
Preview prefs setting.

 StepRender Render only 1 out of every X frames (“shoot on X frames”) or render every
frame, default false.

85

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 Steps If step rendering, how many to step. Default 5.

 UseNetwork Enables rendering with the network. Default false.

 Groups Use these network slave groups to render on (when net rendering). Default “all”.

 Flags Number specifying render flags, usually 0 (the default). Most flags are specified by
other means, but a value of 262144 is used for preview renders.

 Tool Handle to a tool to specifically render. If this is specified only sections of the comp up
to this tool will be rendered. eg you could specify comp.Saver1 to only render up to Saver1,
ignoring any tools (including savers) after it. default nil.

 FrameRange Describes which frames to render. (eg “1..100,150..180”), defaults to
“Start”..”End” (above).

 Wait Whether the script command will wait for the render to complete, or return immediately,
default false.

 > Python usage:

Render explicit render range, wait for the render.

composition.Render(True, 1, 100, 1) # wait, specify the render range

Renders a non-contiguous frame range, and returns once the render has completed.

comp.Render({ “FrameRange”: “1..10,20,30,40..50”, “Wait”: True })

Render up to the Saver1 tool, but nothing further downstream.

comp.Render({“Tool”: comp.Saver1})

 > Lua usage:

-- Render explicit render range, wait for the render.

composition:Render(true, 1, 100, 1) -- wait, specify the render range

-- Renders a non-contiguous frame range, and returns once the render has completed.

comp:Render({ FrameRange = “1..10,20,30,40..50”, Wait = true })

-- Render up to the Saver1 tool, but nothing further downstream.

comp:Render({Tool = comp.Saver1})

86

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Parameters:

wait (boolean) – wait

start (number) – start

end (number) – end

proxy (number) – proxy

hiq (boolean) – hiq

motionblur (boolean) – motionblur

 > Returns: success

 > Return type: boolean

Composition.Render(settings)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Start a render.

 The Render function starts rendering the current composition. There are two forms for
calling this function, one where the arguments are passed directly, and a second form
where all the arguments are passed in a table. The table format is useful for declaring
non-contiguos render ranges, such as the following one.

 Returns true if the composition rendered successfully, nil if it failed to start or complete
the render.

Arguments

 wait_for_render a true or false value indicating whether the script should wait for the
render to complete, or continue processing once the render has begun.

 renderstart the frame to start rendering at.

 renderend the frame to stop rendering at.

 step render 1 out of x frames. For example, a value of 2 here would render every
second frame.

 proxy scale all frames down by this factor, for faster rendering.

 hiQ do high-quality rendering (defaults to true, if not specified).

 mblur calculate motion-blur when rendering (defaults to true, if not specified)

Table form

 The table entries should be one or more of the following:

Start First frame to render. Default: Comp’s render end setting.

End Final frame to render (inclusive). Default: Comp’s render end setting.

HiQ Render in HiQ. Default true.

87

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

RenderAll Render all tools, even if not required by a saver. Default false.

MotionBlur Do motion blur in render, where specified in tools. Default true.

SizeType Resizes the output:

-1 Custom (only used by PreviewSavers during a preview render)

0 Use prefs setting

1 Full Size (default)

2 Half Size

3 Third Size

4 Quarter Size

 Width Width of result when doing a Custom preview (defaults to pref).

 Height Height of result when doing a Custom preview (defaults to pref).

 KeepAspect Maintains the frame aspect when doing a Custom preview. Defaults to
Preview prefs setting.

 StepRender Render only 1 out of every X frames (“shoot on X frames”) or render every
frame, default false.

 Steps If step rendering, how many to step. Default 5.

 UseNetwork Enables rendering with the network. Default false.

 Groups Use these network slave groups to render on (when net rendering). Default “all”.

 Flags Number specifying render flags, usually 0 (the default). Most flags are specified by
other means, but a value of 262144 is used for preview renders.

 Tool Handle to a tool to specifically render. If this is specified only sections of the comp up
to this tool will be rendered. eg you could specify comp.Saver1 to only render up to Saver1,
ignoring any tools (including savers) after it. default nil.

 FrameRange Describes which frames to render. (eg “1..100,150..180”), defaults to
“Start”..”End” (above).

 Wait Whether the script command will wait for the render to complete, or return immediately,
default false

 > Python usage:

Render explicit render range, wait for the render.

composition.Render(True, 1, 100, 1) # wait, specify the render range

88

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Renders a non-contiguous frame range, and returns once the render has completed.

comp.Render({ “FrameRange”: “1..10,20,30,40..50”, “Wait”: True })

Render up to the Saver1 tool, but nothing further downstream.

comp.Render({“Tool”: comp.Saver1})

 > Lua usage:

-- Render explicit render range, wait for the render.

composition:Render(true, 1, 100, 1) -- wait, specify the render range

-- Renders a non-contiguous frame range, and returns once the render has completed.

comp:Render({ FrameRange = “1..10,20,30,40..50”, Wait = true })

-- Render up to the Saver1 tool, but nothing further downstream.

comp:Render({Tool = comp.Saver1})

 > Parameters:

settings (table) – settings

 > Returns: success

 > Return type: boolean

Composition.ReverseMapPath(mapped)

 Collapses a path into best-matching path map.

 Whereas MapPath() is used to expand any Fusion path maps within a pathname to get an
ordinary literal path, ReverseMapPath() will perform the opposite process, and re-insert
those path maps.

 This is often useful if the path is to be stored for later usage (within a comp or script, for
example). It allows the path to be used with the same meaning for another system or
situation, where the literal location of the path may be different.

 In addition to handling all the global path maps like Fusion:ReverseMapPath(),
Composition:ReverseMapPath() also handles any path maps listed in the composition’s
Path Maps preferences page, as well as the built-in Comp: path map (see MapPath()).

 Returns a path with the Fusion path map handles re-inserted wherever possible.

89

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Parameters:

mapped (string) – mapped

 > Returns: path

 > Return type: string

Composition.RunScript(filename)

 Run a script within the composition’s script context.

 Use this function to run a script in the composition environment. This is similar to launching
a script from the comp’s Scripts menu.

 The script will be started with ‘fusion’ and ‘composition’ variables set to the Fusion and
currently active Composition objects. The filename given may be fully specified, or may be
relative to the comp’s Scripts: path.

 Fusion supports .py .py2 and .py3 extensions to differentiate python script versions.

 > Parameters:

filename (string) – filename

Composition.Save(filename)

 Save the composition

 This function causes the composition to be saved to disk. The compname argument must
specify a path relative to the filesystem of the Fusion which is saving the composition. In
other words - if system ‘a’ is using the Save() function to instruct a Fusion on system ‘b’ to
save a composition, the path provided must be valid from the perspective of system ‘b’.

 filename is the complete path and name of the composition to be saved.

 > Parameters:

filename (string) – filename

 > Returns: success

 > Return type: boolean

Composition.SaveAs()
Prompt user with a Save As dialog box to save the composition.

Composition.SaveCopyAs()
Prompt user with a Save As dialog box to save the composition as copy.

Composition.SetActiveTool(tool)

 Set the currently active tool.

 This function will set the currently active tool to one specified by script. It can be read with
ActiveTool.

 To deselect all tools, omit the parameter or use nil.

90

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 Note that ActiveTool also means the tool is selected, while selected tools are not automativally
Active. Only one tool can be Active at a time. To select tools use FlowView:Select().

 > Parameters:

tool (Tool) – tool

Composition.SetData(name, value)

 Set custom persistent data.

 name name of the data. This name can be in “table.subtable” format, to allow persistent
data to be stored within subtables.

 value to be recorded in the object’s persistent data. It can be of almost any type.

 Persistent data is a very useful way to store names, dates, filenames, notes, flags, or anything
else, in such a way that they are permanently associated with this instance of the object,
and are stored along with the object using SetData(), and can be retrieved at any time with
GetData().

 The method of storage varies by object: SetData() called on the Fusion app itself will
save its data in the Fusion.prefs file, and will be available whenever that copy of Fusion is
running. Calling SetData() on any object associated with a Composition will cause the data
to be saved in the .comp file, or in any settings files that may be saved directly from that
object. Some ephemeral objects that are not associated with any composition and are not
otherwise saved in any way, may not have their data permanently stored at all, and the data
will only persist as long as the object itself does.

 > Python usage:

from pprint import pprint

from datetime import datetime

tool = comp.ActiveTool

tool.SetData(“Modified.Author”, fusion.GetEnv(“USERNAME”))

tool.SetData(“Modified.Date”, str(datetime.now()))

pprint(tool.GetData(“Modified”))

 > Lua usage:

tool:SetData(“Modified.Author”, fusion:GetEnv(“USERNAME”))

tool:SetData(“Modified.Date”, os.date())

dump(tool:GetData(“Modified”))

91

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Parameters:

name (string) – name

value ((number|string|boolean|table)) – value

Composition.SetPrefs(prefname, val)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Set preferences from a table of attributes.

 The SetPrefs function can be used to specify the values of virtually all preferences in Fusion.
Its can take a table of values, identified by name, or a single name and value.

 The table provided as an argument should have the format [prefs_name] = value. Subtables
are allowed.

 It is possible to set a preference that does not exist. For example, setting fusion:SetPrefs
({Comp.FrameFormat.Stuff = “Bob”}) will create a new preference which will be thereafter
preserved in the Fusion preferences file.

 Returns false if any of the arguments provided to it are invalid, and true otherwise. Note
that the function will still return true if an attempt is made to set a preference to an invalid
value. For example, attempting to setting the FPS to “Bob” will fail, but the function will still
return true.

 > Python usage:

comp.SetPrefs({ “Comp.Transport.FrameStep”:5, “Comp.FrameFormat.AspectX”:2 })

comp.SetPrefs(“Comp.Interactive.BackgroundRender”, True)

 > Lua usage:

comp:SetPrefs({ [“Comp.Unsorted.GlobalStart”]=0, [“Comp.Unsorted.GlobalEnd”]=100 })

comp:SetPref(“Comp.Interactive.BackgroundRender”, true)

 > Parameters:

prefname (string) – prefname

val (value) – val

Composition.SetPrefs(prefs)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Set preferences from a table of attributes.

 The SetPrefs function can be used to specify the values of virtually all preferences in Fusion.
Its can take a table of values, identified by name, or a single name and value.

92

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 The table provided as an argument should have the format [prefs_name] = value. Subtables
are allowed.

 It is possible to set a preference that does not exist. For example, setting fusion:
SetPrefs({Comp.FrameFormat.Stuff = “Bob”}) will create a new preference which will be
thereafter preserved in the Fusion preferences file.

 Returns false if any of the arguments provided to it are invalid, and true otherwise.

 Note that the function will still return true if an attempt is made to set a preference to an
invalid value. For example, attempting to setting the FPS to “Bob” will fail, but the function
will still return true.

 > Python usage:

comp.SetPrefs({ “Comp.Transport.FrameStep”:5, “Comp.FrameFormat.AspectX”:2 })

comp.SetPrefs(“Comp.Interactive.BackgroundRender”, True)

 > Lua usage:

comp:SetPrefs({ [“Comp.Unsorted.GlobalStart”]=0, [“Comp.Unsorted.GlobalEnd”]=100 })

comp:SetPref(“Comp.Interactive.BackgroundRender”, true)

 > Parameters:

prefs (table) – prefs

Composition.StartUndo(name)

 Start an undo event.

 The StartUndo() function is always paired with an EndUndo() function. Any changes made
to the composition by the lines of script between StartUndo() and EndUndo() are stored as
a single Undo event.

 Changes captured in the undo event can be undone from the GUI using CTRL-Z, or the Edit
menu. They can also be undone from script, by calling the Undo function.

 Should be used sparingly, as the user (or script) will have no way to undo the
preceding commands.

 name specifies the name displayed in the Edit/Undo menu of the Fusion GUI a string
containing the complete path and name of the composition to be saved.

 Actual changes must be made to the composition (forcing a “dirty” event) before the undo
will be added to the stack.

93

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Python usage:

composition.StartUndo(“Add some tools”)

bg1 = comp.Background()

pl1 = comp.Plasma()

mg1 = comp.Merge({ “Background”: bg1, “Foreground”: pl1 })

composition.EndUndo(True)

 > Lua usage:

composition:StartUndo(“Add some tools”)

bg1 = Background{}

pl1 = Plasma{}

mg1 = Merge{ Background = bg1, Foreground = pl1 }

composition:EndUndo(true)

 > Parameters:

name (string) – name

Composition.Stop()

 Stops interactive playback.

 Use this function in the same way that you would use the Stop button in the composition’s
playback controls.

Composition.Undo(count)

 Undo one or more changes to the composition.

 The Undo function triggers an undo event in Fusion. The count argument determines how
many undo events are triggered.

 Note that the value of count can be negative, in which case Undo will behave as a Redo,
acting exactly as the Redo() function does.

 count specifies how many undo events to trigger.

 > Parameters:

count (number) – count

94

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Composition.Unlock()

 Unlock the composition.

 The Unlock() function returns a composition to interactive mode. This allows Fusion to show
dialog boxes to the user, and allows re-rendering in response to changes to the controls.
Calling Unlock() will have no effect unless the composition has been locked with the Lock()
function first.

 It is often useful to surround a script with Lock() and Unlock(), especially when adding tools
or modifying a composition. Doing this ensures Fusion won’t pop up a dialog to ask for user
input, e.g. when adding a Loader, and can also speed up the operation of the script since
no time will be spent rendering until the comp is unlocked.

 > Python usage:

comp.Lock()

Will not open the file dialog, since the composition is locked

my_loader = comp.Loader()

comp.Unlock()

 > Lua usage:

comp:Lock()

-- Will not open the file dialog, since the composition is locked

my_loader = Loader()

comp:Unlock()

Composition.UpdateViews()

 UpdateViews

FloatViewFrame

class FloatViewFrame

 Parent class: FuFrame

Methods

FloatViewFrame.ActivateFrame()

 Activates this frame window.

95

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

FloatViewFrame.ActivateNextFrame()

 Activates the next frame window.

FloatViewFrame.ActivatePrevFrame()

 Activates the previous frame window.

FlowView

class FlowView

 Parent class: FuView

 The FlowView represents the flow with all the tools.

 Positions of tools, their selection state and the views zoom level are controlled with
this object.

 > Python usage:

Get the current FlowView

flow = composition.CurrentFrame.FlowView

 > Lua usage:

-- Get the current FlowView

flow = composition.CurrentFrame.FlowView

Methods

FlowView.FlushSetPosQueue()

 Moves all tools queued for positioning with QueueSetPos.

FlowView.FrameAll()

 Rescale and reposition the FlowView to contain all tools.

FlowView.GetPos()

 Returns the position of a tool.

 This function returns two numeric values containing the X and Y co-ordinates of the tool. In
Python use GetPosTable instead.

96

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Python usage:

flow = comp.CurrentFrame.FlowView

x, y = flow.GetPosTable(comp.Background1).values()

 > Lua usage:

flow = comp.CurrentFrame.FlowView

x, y = flow:GetPos(tool)

 > Returns: x

 > Return type: number

FlowView.GetPosTable(tool)

 Returns the position of a tool as a table.

 Use this in Python to get the X and Y value.

 > Python usage:

flow = comp.CurrentFrame.FlowView

x, y = flow.GetPosTable(comp.Background1).values()

 > Lua usage:

flow = comp.CurrentFrame.FlowView

x, y = flow:GetPos(tool)

 > Parameters:

tool (object) – tool

 > Returns: pos

 > Return type: table

FlowView.GetScale()

 Returns the current scale of the contents.

 This function returns a numeric value indicating the current scale of the FlowView. 1 means
100%, while 0.1 means 10% of the default scale.

 > Returns: scale

 > Return type: number

97

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

FlowView.QueueSetPos(tool, x, y)

 Queues the moving of a tool to a new position.

 All queued moves will be evaluated once FlushSetPosQueue() has been called.

 > Parameters:

tool (object) – tool

x (number) – x

y (number) – y

FlowView.Select(tool[, select])

 Selects or deselects a tool.

 This function will add or remove the tool specified in it’s first argument from the current
tool selection set. The second argument should be set to false to remove the tool from the
selection, or to true to add it.

 tool should contain the tool that will be selected or deselected in the FlowView.

 select setting this to false will deselect the tool specified in the first argument. Otherwise
the default value of true is used, which selects the tool.

 If called with no arguments, the function will clear all tools from the current selection.

 > Parameters:

tool (object) – tool

select (boolean) – select

FlowView.SetPos(tool, x, y)

 Moves a tool to a new position.

 > Python usage:

Align all selected tools to x co-ordinate of the ActiveTool

flow = comp.CurrentFrame.FlowView

x, y = flow.GetPosTable(comp.ActiveTool)

for t in comp.GetToolList(True).values():

 cur_x, cur_y = flow.GetPosTable(t)

 flow.SetPos(t, x, cur_y)

 > Lua usage:

-- Align all selected tools to x co-ordinate of the ActiveTool

local flow = comp.CurrentFrame.FlowView

local x, y = flow:GetPos(comp.ActiveTool)

98

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

for i, t in pairs(comp:GetToolList(true)) do

 cur_x, cur_y = flow:GetPos(t)

 flow:SetPos(t, x, cur_y)

end

 > Parameters:

tool (object) – tool

x (number) – x

y (number) – y

FlowView.SetScale(scale)

 Change the scale of the contents.

 This function rescales the FlowView to the amount specified. A value of 1 for the scale
argument would set the FlowView to 100%, while a value of 0.1 would set it to 10% of the
default scale.

 > Parameters:

scale (number) – scale

FontList

class FontList

 Parent class: List

Methods

FontList.AddFont(fontfile)

 Adds the specified font to the global font list.

 > Parameters:

fontfile (string) – fontfile

 > Returns: success

 > Return type: boolean

FontList.Clear()

 Empties the global font list.

99

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

FontList.GetFontList()

 Returns all font files in the global font list.

 > Returns: fonts

 > Return type: table

FontList.ScanDir([dirname])

 Adds the specified dir to the global font list.

 > Parameters:

dirname (string) – dirname

FuFrame

class FuFrame

 Parent class: Object

Members

FuFrame.Composition

 Represents this frame window’s Composition (read-only).

 > Setting:

 FuFrame.Composition = comp – (Composition)

FuFrame.ConsoleView

Represents this frame window’s console (read-only).

 > Setting:

 FuFrame.ConsoleView = view – (FuView)

FuFrame.CurrentView

 Represents the currently active view for this frame window (read-only).

 > Setting:

 FuFrame.CurrentView = view – (FuView)

FuFrame.FlowView

 Represents this frame window’s Flow view (read-only).

 > Setting:

 FuFrame.FlowView = view – (FuView)

100

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

FuFrame.InfoView

 Represents this frame window’s Info view (read-only).

 > Setting:

 FuFrame.InfoView = view – (FuView)

FuFrame.LeftView

 Represents this frame window’s left display view (read-only).

 > Setting:

 FuFrame.LeftView = view – (GLView)

FuFrame.ModifierView

 Represents this frame window’s Modifier controls view (read-only).

 > Setting:

 FuFrame.ModifierView = view – (FuView)

FuFrame.RightView

 Represents this frame window’s right display view (read-only).

 > Setting:

 FuFrame.RightView = view – (GLView)

FuFrame.SplineView

 Represents this frame window’s spline editor view (read-only).

 > Setting:

 FuFrame.SplineView = view – (FuView)

FuFrame.TimeRulerView

 Represents this frame window’s time ruler (read-only).

 > Setting:

 FuFrame.TimeRulerView = view – (FuView)

FuFrame.TimelineView

 Represents this frame window’s Timeline view (read-only).

 > Setting:

 FuFrame.TimelineView = view – (FuView)

FuFrame.ToolView

 Represents this frame window’s Tool controls view (read-only).

 > Setting:

 FuFrame.ToolView = view – (FuView)

101

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

FuFrame.TransportView

 Represents this frame window’s transport controls view (read-only).

 > Setting:

 FuFrame.TransportView = view – (FuView)

Methods

FuFrame.GetPreviewList([include_globals])

 Retrieves a table of previews.

 > Parameters:

include_globals (boolean) – include_globals

 > Returns: previews

 > Return type: table

FuFrame.GetViewList()

 Returns the list of views within this frame.

 > Returns: views

 > Return type: table

FuFrame.SwitchView(id)

 Displays a given view within this frame.

 > Parameters:

id (string) – id

FuFrame.ViewOn([tool][, view])

Displays a tool on a numbered view.

 > Python usage:

comp.CurrentFrame.ViewOn(tool, 1)

 > Lua usage:

comp.CurrentFrame:ViewOn(tool, 1)

 > Parameters:

 tool (Tool) – tool

 view (number) – view

102

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Fusion

class Fusion

 Parent class: Object

 Handle to the application.

Fusion Attributes

Attribute Name Type Description

FUSIONS_FileName string The path to the Fusion.exe file.

FUSIONS_Version string The version of FUSION that we are
connected to,
in either string (FUSION_Version) or
numeric (FUSIONI_VersionHi, FUSIONI_
VersionLo) format.

FUSIONI_SerialHi
FUSIONI_SerialLo

integer The serial number of the Fusion license
that we are connected to.

FUSIONS_MachineType string The type (OS and CPU) of machine.

FUSIONI_NumProcessors integer The number of processors present in the
machine running Fusion.

FUSIONB_IsManager boolean Indicates if this Fusion is currently a
render master.

FUSIONI_MemoryLoad integer The current Memory load percentage of
the machine, from 0 to 100.

FUSIONI_PhysicalRAMTotalMB integer The total amount of physical RAM, in MB.

FUSIONI_PhysicalRAMFreeMB integer The amount of physical RAM free, in MB.

FUSIONI_VirtualRAMTotalMB integer The total amount of virtual RAM, in MB.

FUSIONI_VirtualRAMUsedMB integer The total amount of virtual RAM in
use, in MB.

FUSIONB_IsPost boolean Indicates if this Fusion is a Post license.

FUSIONB_IsDemo boolean Indicates if this Fusion is a Demo license.

FUSIONB_IsRenderNode boolean Indicates if this Fusion is a Render
Node license.

FUSIONH_CurrentComp handle Returns a handle to the current
composition that has the focus in Fusion.

FUSIONI_VersionHi
FUSIONI_VersionLo

integer

103

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Python usage:

Get basic connection to fusion.

fu = bmd.scriptapp(“Fusion”)

 > Lua usage:

-- Get basic connection to fusion.

fu = fu or Fusion()

Members
Fusion.Bins

 Bins (read-only).

 >Getting:

 bins = Fusion.Bins – (Bins)

Fusion.Build

 Returns the build number of the current Fusion instance.

 >Getting:

 build = Fusion.Build – (number)

Fusion.CacheManager

 The Global Cache Manager (read-only).

 >Getting:

 cm = Fusion.CacheManager – (CacheManager)

Fusion.CurrentComp

 Represents the currently active composition (read-only).

 >Getting:

 comp = Fusion.CurrentComp – (Composition)

Fusion.FileLogging()

 Are Fusion logs enabled.

 Returns true if Fusion was started with a /log filepath argument.

Fusion.FontManager

 The Global Font Manager (read-only).

 >Getting:

 fm = Fusion.FontManager – (FontList)

104

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Fusion.HotkeyManager

 The Global Hotkey Manager (read-only).

 >Getting:

 hkm = Fusion.HotkeyManager – (HotkeyManager)

Fusion.MenuManager

 The Global Menu Manager (read-only).

 >Getting:

 mm = Fusion.MenuManager – (MenuManager)

Fusion.QueueManager

 The global render manager for this instance of Fusion (read-only).

 >Getting:

 qm = Fusion.QueueManager – (QueueManager)

Fusion.RenderManager

 The global render manager for this instance of Fusion (read-only).

 >Getting:

 qm = Fusion.RenderManager – (QueueManager)

Fusion.Version

 Returns the version of the current Fusion instance.

 >Getting:

 ver = Fusion.Version – (number)

Methods

Fusion.AllowNetwork()

 AllowNetwork

Fusion.ClearFileLog()

 Clears the log if started with the /log argument.

Fusion.CreateFloatingView()

 Creates a new FloatView.

Fusion.CreateMail()

 Returns an object handle that can be manipulated with other mail related functions.

 Within Fusion there are a number of scripts that can be used to send information to people
through email. This could be utilized to notify a user when their render is complete, or if any
errors have occurred with a render.

105

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Python usage:

mail = fusion.CreateMail()

mail.AddRecipients(“vfx@studio.com, myself@studio.com”)

mail.SetSubject(“Render Completed”)

mail.SetBody(“The job completed.”)

ok,errmsg = mail.SendTable().values()

print(ok)

print(errmsg)

 > Lua usage:

mail = fusion:CreateMail()

mail:AddRecipients(“vfx@studio.com, myself@studio.com”)

mail:SetSubject(“Render Completed”)

mail:SetBody(“The job completed.”)

ok,errmsg = mail:Send()

print(ok)

print(errmsg)

 > Returns: mail

 > Return type: MailMessage

Fusion.DumpCgObjects(filename)

 Writes the state of all current Cg shaders to the given file.

 > Parameters:

filename (string) – filename

106

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Returns: success

 > Return type: boolean

Fusion.DumpGLObjects(filename)

 Writes the state of all current OpenGL objects to the given file.

 > Parameters:

filename (string) – filename

 > Returns: success

 > Return type: boolean

Fusion.DumpGraphicsHardwareInfo(filename)

 Writes the information of the graphics hardware to the given file.

 > Parameters:

filename (string) – filename

 > Returns: success

 > Return type: boolean

Fusion.DumpOpenCLDeviceInfo(filename)

 Writes the information of the OpenCL device to the given file.

 > Parameters:

filename (string) – filename

 > Returns: success

 > Return type: boolean

Fusion.Execute()

 Executes a script string for the fusion instance.

 See Composition:Execute().

Fusion.FindReg(id[, type])

 Finds a registry object by name.

 An optional type restricts the search. Some valid type constants include

 > CT_Tool

 > CT_Filter

 > CT_FilterSource

 > CT_ParticleTool

 > CT_ImageFormat

 Returns nil / None if no match is found.

107

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Python usage:

from pprint import pprint

reg = fusion.FindReg(“Loader”)

pprint(reg.GetAttrs())

Lua usage:

 > Lua usage:

reg = fusion:FindReg(“Loader”)

dump(reg:GetAttrs())

 > Parameters:

id (string) – id

type (number) – type

 > Returns: reg

 > Return type: Registry

Fusion.GetAppInfo()

 Returns a table containing information about the current application’s name, executable,
version, and build number.

Fusion.GetArgs()

 Get command line arguments.

 Returns Fusion’s command line arguments as a table.

 > Returns: args

 > Return type: table

Fusion.GetCPULoad()

 Retrieves the current CPU load of the system.

 Returns the current CPU load as a percentage between 0 and 100.

Fusion.GetClipboard()

 Retrieves the tool(s) on the clipboard, as tables and as ASCII text.

 Returns a string or table of the current contents of the clipboard, or nil if empty.

 > Returns: cliptbl

 > Return type: table

108

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Fusion.GetCompList()

 Retrieves a table of all compositions currently present.

 > Returns: complist

 > Return type: table

Fusion.GetCurrentComp()

 Returns the currently active composition.

 > Returns: comp

 > Return type: Composition

Fusion.GetData([name])

 Get custom persistent data.

 See Composition:GetData().

 > Parameters:

name (string) – name

 > Returns: value

 > Return type: (number|string|boolean|table)

Fusion.GetEnv(name)

 Retrieve the value of an environment variable.

 Returns the value of an environment variable on the machine running Fusion. This function is
 identical to the global os.getenv() function, except that it runs in the context of the Fusion

instance, so if the Fusion instance points to a remote copy of Fusion the environment
variable will come from the remote machine.

 > Parameters:

name (string) – name

 > Returns: value

 > Return type: string

Fusion.GetGlobalPathMap([built_ins][, defaults])

 Returns a table of all global path maps.

 > Parameters:

built_ins (boolean) – built_ins

defaults (boolean) – defaults

 > Returns: map

 > Return type: table

109

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Fusion.GetMainWindow()
Get the window handle for fusion.

Fusion.GetPrefs([prefname][, exclude-defaults])

 Retrieve a table of preferences.

 This function is useful for getting the full table of global preferences, or a subtable, or a
specific value.

 If the argument is omitted all preferences will be returned.

 Returns a table of preferences, or a specific preference value.

 > Python usage:

from pprint import pprint

pprint(fusion.GetPrefs(“Global.Paths.Map”))

print(fusion.GetPrefs(“Global.Controls.GrabDistance”))

 > Lua usage:

dump(fusion:GetPrefs(“Global.Paths.Map”))

print(fusion:GetPrefs(“Global.Controls.GrabDistance”))

 > Parameters:

prefname (string) – prefname

exclude-defaults (boolean) – exclude-defaults

 > Returns: prefs

 > Return type: table

Fusion.GetPreviewList()

 Retrieves a table of global previews.

 This function returns a list of preview objects currently available to the Fusion object. The
Composition:GetPreviewList function is similar, but it will not return floating views, like this
function does.

 > Returns: previewlist

 > Return type: table

Fusion.GetRegAttrs(id[, type])

 Retrieve information about a registry ID.

 The GetRegAttrs() function will return a table with the attributes of a specific individual
registry entry in Fusion. The only argument is the ID, a unique numeric identifier possessed

110

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

by each entry in the registry. The ID identifiers for each registry item can be obtained from
fusion:GetRegList(), fusion:FindRegID(), and tool:GetID() functions.

 Registry attributes are strictly read only, and cannot be modified in any way.

 > Python usage:

from pprint import pprint

Dump RegAttrs for the Active tool,

or prints message if nothing is Active.

pprint(comp.ActiveTool and

 fusion.GetRegAttrs(comp.ActiveTool.ID) or

 “Please set an ActiveTool first.”)

 > Lua usage:

-- Dump RegAttrs for the Active tool,

-- or prints message if nothing is Active.

dump(comp.ActiveTool and

 fusion:GetRegAttrs(comp.ActiveTool.ID) or

 “Please set an ActiveTool first.”)

 > Parameters:

id (string) – id

type (number) – type

 > Returns: attrs

 > Return type: table

Fusion.GetRegList(typemask)

 Retrieve a list of all registry objects known to the system.

 The Fusion registry stores information about the configuration and capabilities of a
particular installation of Fusion. Details like which file formats are supported, and which
tools are installed are found in the registry. Note that this is NOT the same thing as the
operating system registry, the registry accessed by this function is unique to Fusion.

111

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 The only argument accepted by GetRegAttrs is a mask constant, which is used to filter the
registry for specific registry types. The constants represent a particular type of registry
entry, for example CT_Any will return all entries in the registry, while CT_Source will only
return entries describing tools from the source category of tools (Loader, Plasma, Text...). A
complete list of valid constants can be found here.

 Returns a table, which contains a list of the Numeric ID values for each registry entry. The
numeric ID is constant from machine to machine, e.g. the numeric ID for the QuickTime
format would be 1297371438, regardless of the installation or version of Fusion.

 These ID’s are used as arguments to the GetRegAttrs() function, which provides access to
the actual values stored in the specific registry setting.

 typemask a predefined constant that determines the type of registry entry returned by
the function.

 Some valid Mask constants:

 CT_Tool all tools

 CT_Mask mask tools only

 CT_SourceTool creator tools (images/3D/particles) all
of which don’t require an input image

 CT_ParticleTool Particle tools

 CT_Modifier Modifiers

 CT_ImageFormat ImageFormats

 CT_View Different sections of the interface

 CT_GLViewer All kinds of viewers

 CT_PreviewControl PreviewControls in the viewer

 CT_InputControl Input controls

 CT_BinItem Bin items

 > Python usage:

from pprint import pprint

this example will print out all of the

image formats supported by this copy

of Fusion

112

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

reg = fusion.GetRegList(comp.CT_ImageFormat)

reg[“Attrs”] = {}

for i in range(1, len(reg)):

 reg[“Attrs”][i] = fusion.GetRegAttrs(reg[i].ID)

 name = reg[“Attrs”][i][“REGS_MediaFormat_FormatName”]

 if name == None:

 name = reg[“Attrs”][i][“REGS_Name”]

 if reg[“Attrs”][i][“REGB_MediaFormat_CanSave”] == True:

 print(name)

 else:

 print(name + “ (Cannot Save)”)

 > Lua usage:

-- this example will print out all of the

-- image formats supported by this copy

-- of Fusion

reg = fusion:GetRegList(CT_ImageFormat)

reg.Attrs = {}

for i = 1, #reg do

 reg.Attrs[i] = fusion:GetRegAttrs(reg[i].ID)

 name = reg.Attrs[i].REGS_MediaFormat_FormatName

 if name == nil then

 name = reg.Attrs[i].REGS_Name

 end

113

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 --dump(reg.Attrs[i])

 if reg.Attrs[i].REGB_MediaFormat_CanSave == true then

 print(name)

 else

 print(name .. “ (Cannot Save)”)

 end

end

 > Parameters:

typemask (number) – typemask

 > Returns: reglist

 > Return type: table

Fusion.GetRegSummary(typemask[, hidden])

 Retrieve a list of basic info for all registry objects known to the system.

 This function is useful for getting the full table of global preferences, or a subtable, or a
specific value.

 Returns a table containing a summary of the Name, ID, ClassType, and OpIconString of
every item in the registry. Useful for returning a lightweight version of the information
presented by Fusion:GetRegList.

 > Parameters:

typemask (number) – typemask

hidden (boolean) – hidden

 > Returns: regattrs

 > Return type: table

Fusion.LoadComp(filename[, quiet][, autoclose][, hidden])

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Loads an existing composition.

 auto-close a true or false value to determine if the composition will close automatically
when the script exits. Defaults to false.

 hidden if this value is true, the comp will be created invisibly, and no UI will be available to
the user. Defaults to false.

 Returns a handle to the opened composition.

114

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Parameters:

filename (string) – filename

quiet (boolean) – quiet

autoclose (boolean) – autoclose

hidden (boolean) – hidden

 > Returns: comp

 > Return type: Composition

Fusion.LoadComp(filename, options)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Loads an existing composition.

 auto-close a true or false value to determine if the composition will close automatically
when the script exits. Defaults to false.

 hidden if this value is true, the comp will be created invisibly, and no UI will be available to
the user. Defaults to false.

 Returns a handle to the opened composition.

 > Parameters:

filename (string) – filename

options (table) – options

 > Returns: comp

 > Return type: Composition

Fusion.LoadComp(savedcomp, options)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Loads an existing composition.

 auto-close a true or false value to determine if the composition will close automatically
when the script exits. Defaults to false.

 hidden if this value is true, the comp will be created invisibly, and no UI will be available to
the user. Defaults to false.

 Returns a handle to the opened composition.

 > Parameters:

savedcomp (MemBlock) – savedcomp

options (table) – options

 > Returns: comp

 > Return type: Composition

115

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Fusion.LoadPrefs([filename][, mastername])

 Reloads all current global preferences.

 Reloads all global preferences from the specified file and (optionally) an overriding master
prefs file.

 > Parameters:

filename (string) – filename

mastername (string) – mastername

 > Returns: success

 > Return type: boolean

Fusion.LoadRecentComp(index[, quiet][, autoclose][, hidden])

 Loads an composition from the recent file list.

 index the most recent composition is 1. The index is the same as in the Recent Files menu.

 auto-close a true or false value to determine if the composition will close automatically
when the script exits. Defaults to false.

 hidden if this value is true, the comp will be created invisibly, and no UI will be available to
the user. Defaults to false.

 > Parameters:

index (integer) – index

quiet (boolean) – quiet

autoclose (boolean) – autoclose

hidden (boolean) – hidden

 > Returns: comp

 > Return type: Composition

Fusion.MapPath(path)

 Expands path mappings in a path string.

 See Comp:MapPath().

 > Python usage:

print(comp.MapPath(“Fusion:”))

 > Lua usage:

print(MapPath(“Fusion:”))

116

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Parameters:

path (string) – path

 > Returns: mapped

 > Return type: string

Fusion.MapPathSegments(path)

 Expands all path mappings in a multipath.

 See Comp:MapPathSegments().

 > Parameters:

path (string) – path

 > Returns: mapped

 > Return type: table

Fusion.NewComp([quiet][, autoclose][, hidden])

 Creates a new composition.

 auto-close a true or false value to determine if the composition will close automatically
when the script exits. Defaults to false.

 hidden if this value is true, the comp will be created invisibly, and no UI will be available to
the user. Defaults to false.

 > Parameters:

quiet (boolean) – quiet

autoclose (boolean) – autoclose

hidden (boolean) – hidden

 > Returns: comp

 > Return type: Composition

Fusion.OpenFile(filename, mode)

 Open a file.

 filename specifies the full path and name of the file to open

 mode specifies the mode(s) of file access required, from a combination of the following
constants:

 FILE_MODE_READ Read access FILE_MODE_WRITE Write access FILE_MODE_
UNBUFFERED Unbuffered access FILE_MODE_SHARED Shared access

 Returns a file object or nil if the open fails.

117

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Lua usage:

fusion:OpenFile([[c:\\fusion.log]], FILE_MODE_READ)

line = f:ReadLine()

while line do

 print(line)

 line = f:ReadLine()

end

 > Parameters:

filename (string) – filename

mode (number) – mode

 > Returns: file

 > Return type: File

Fusion.OpenLibrary()

 OpenLibrary

Fusion.QueueComp(filename[, start][, end][, group])

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Queue a composition to be rendered locally.

 The QueueComp function submits a composition from disk to the render manager. If the
render start and end are not provided then the render manager will render the range saved
with the composition. Otherwise these arguments will override the saved range.

 Returns true if it succeeds in adding the composition to the Queue, and false if it fails.

 filename a string describing the full path to the composition which is to be queued.

 start a number which describes the first frame in the render range.

 end a number which describes the last frame in the render range.

 group specifies the slave group to use for this job.

Table form

 Specifies the slave group to use for this job. The following keys are valid:

 FileName The Comp to queue QueuedBy Who queued this comp Groups Slave groups
to render on Start Render Start End Render End FrameRange Frame range string, used
in place of start/end above RenderStep Render Step ProxyScale Proxy Scale to render at
TimeOut Frame timeout

118

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Python usage:

QueueComp with additional options

fusion.QueueComp({

“FileName”: “c:\\example.comp”,

“QueuedBy”: “Bob Lloblaw”,

“Start”: 1,

“End”: 25,

“Step”: 5,

“ProxyScale”: 2

})

Specify a non-sequential frame range

fusion.QueueComp({

 “FileName”: “c:\\example.comp”,

 “FrameRange”: “1..10,20,30,40..50”

})

 > Lua usage:

-- QueueComp with additional options

fusion:QueueComp({

 FileName = [[c:\example.comp]],

 QueuedBy = “Bob Lloblaw”,

 Start = 1,

 End = 25,

 Step = 5,

 ProxyScale = 2

})

119

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

-- Specify a non-sequential frame range

fusion:QueueComp({

 FileName=[[c:\example.comp]],

 FrameRange = “1..10,20,30,40..50”

})

 > Parameters:

lename (string) – filename

start (number) – start

end (number) – end

group (string) – group

 > Returns: job

 > Return type: RenderJob

Fusion.QueueComp(args)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Queue a composition to be rendered locally.

 The QueueComp function submits a composition from disk to the render manager. If the
render start and end are not provided then the render manager will render the range saved
with the composition. Otherwise these arguments will override the saved range.

 Returns true if it succeeds in adding the composition to the Queue, and false if it fails.

 filename a string describing the full path to the composition which is to be queued.

 start a number which describes the first frame in the render range.

 end a number which describes the last frame in the render range.

 group specifies the slave group to use for this job.

Table form

 Specifies the slave group to use for this job. The following keys are valid:

 FileName The Comp to queue QueuedBy Who queued this comp Groups Slave groups
to render on Start Render Start End Render End FrameRange Frame range string, used
in place of start/end above RenderStep Render Step ProxyScale Proxy Scale to render at
TimeOut Frame timeout

120

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Python usage:

QueueComp with additional options

fusion.QueueComp({

 “FileName”: “c:\\example.comp”,

 “QueuedBy”: “Bob Lloblaw”,

 “Start”: 1,

 “End”: 25,

 “Step”: 5,

 “ProxyScale”: 2

})

Specify a non-sequential frame range

fusion.QueueComp({

 “FileName”: “c:\\example.comp”,

 “FrameRange”: “1..10,20,30,40..50”

})

 > Lua usage:

-- QueueComp with additional options

fusion:QueueComp({

 FileName = [[c:\example.comp]],

 QueuedBy = “Bob Lloblaw”,

 Start = 1,

 End = 25,

 Step = 5,

 ProxyScale = 2

})

121

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

-- Specify a non-sequential frame range

fusion:QueueComp({

 FileName=[[c:\example.comp]],

 FrameRange = “1..10,20,30,40..50”

})

 > Parameters:

args (table) – args

 > Returns: job

 > Return type: RenderJob

Fusion.Quit(exitcode)

 Quit Fusion.

 The Quit command will cause the copy of Fusion referenced by the Fusion instance object
to exit. The Fusion instance object will then be set to nil.

 > Parameters:

exitcode (number) – exitcode

Fusion.ReverseMapPath(mapped)

 Collapses a path into best-matching path map.

 See Composition:ReverseMapPath().

 > Parameters:

mapped (string) – mapped

 > Returns: path

 > Return type: string

Fusion.RunScript(filename)

 Run a script within the Fusion’s script context.

 See Composition:RunScript().

 > Parameters:

filename (string) – filename

Fusion.SavePrefs([filename])

 Saves all current global preferences.

122

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Python usage:

fusion.SetPrefs(“Comp.AutoSave.Enabled”, True)

fusion.SavePrefs()

 > Lua usage:

fusion:SetPrefs(“Comp.AutoSave.Enabled”, true)

fusion:SavePrefs()

 > Parameters:

filename (string) – filename

Fusion.SetBatch()

 SetBatch

Fusion.SetClipboard()

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Sets the clipboard to contain the tool(s) specifed by a table or as ASCII text.

 Sets the system clipboard to contain the ASCII for tool(s) specifed by a table or sets the
clipboard to the text specified.

 > Returns: success

 > Return type: boolean

Fusion.SetClipboard()

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Sets the clipboard to contain the tool(s) specifed by a table or as ASCII text.

 Sets the system clipboard to contain the ASCII for tool(s) specifed by a table or sets the
clipboard to the text specified.

 > Returns: success

 > Return type: boolean

Fusion.SetData(name, value)

 Set custom persistent data.

 See Composition:SetData().

 > Parameters:

name (string) – name

value ((number|string|boolean|table)) – value

123

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Fusion.SetPrefs(prefname, val)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Set preferences from a table of attributes.

 The SetPrefs function can be used to specify the values of virtually all preferences in Fusion.
Its can take a table of values, identified by name, or a single name and value.

 The table provided as an argument should have the format [prefs_name] = value. Subtables
are allowed.

 > Python usage:

fusion.SetPrefs({

 “Global.Network.Mail.OnJobFailure”: True,

 “Global.Network.Mail.Recipients”: “admin@studio.com”

})

fusion.SetPrefs(“Global.Controls.AutoClose”, False)

 > Lua usage:

fusion:SetPrefs({

 [“Global.Network.Mail.OnJobFailure”]=true,

 [“Global.Network.Mail.Recipients”]=”admin@studio.com”

})

fusion:SetPrefs(“Global.Controls.AutoClose”, false)

 > Parameters:

prefname (string) – prefname

val (value) – val

Fusion.SetPrefs(prefs)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Set preferences from a table of attributes.

124

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 The SetPrefs function can be used to specify the values of virtually all preferences in Fusion.
Its can take a table of values, identified by name, or a single name and value.

 The table provided as an argument should have the format [prefs_name] = value. Subtables
are allowed.

 > Python usage:

fusion.SetPrefs({

 “Global.Network.Mail.OnJobFailure”: True,

 “Global.Network.Mail.Recipients”: “admin@studio.com”

})

fusion.SetPrefs(“Global.Controls.AutoClose”, False)

 > Lua usage:

fusion:SetPrefs({

 [“Global.Network.Mail.OnJobFailure”]=true,

 [“Global.Network.Mail.Recipients”]=”admin@studio.com”

})

fusion:SetPrefs(“Global.Controls.AutoClose”, false)

 > Parameters:

prefs (table) – prefs

Fusion.ShowAbout()

 Display the About dialog.

Fusion.ShowPrefs([pageid][, showall][, comp])

 Display the Preferences dialog.

 > Parameters:

pageid (string) – pageid

showall (boolean) – showall

comp (Composition) – comp

Fusion.ShowWindow(mode)

 Show or Hide main window.

 This function will show or hide the main window of Fusion. Note that you can only reshow
the window after hiding it if you are using the command prompt to control Fusion.

125

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Parameters:

 mode (number) – mode

Fusion.Test()
Test

Fusion.ToggleBins()
Shows or hides the Bins window.

The ShowPrefs function will display the Preferences dialog. Optional arguments
can be used to specify which page or panel of the preferences will be opened.

prefname name of the specific page (or panel) of the preferences to
show. The name should be chosen from one of the following:

 > PrefsGeneral

 > Prefs3D

 > PrefsBinSecurity

 > PrefsBinServers

 > PrefsBins

 > PrefsDefaults

 > PrefsFlow

 > PrefsFrameFormat

 > PrefsEDLImport

 > PrefsLayout

 > PrefsLoader

 > PrefsMemory

 > PrefsNetwork

 > PrefsOpenCL

 > PrefsPathMap

 > PrefsPreview

 > PrefsQuickTime

 > PrefsScript

 > PrefsSplineViews

 > PrefsSplines

 > PrefsTimeline

 > PrefsTweaks

 > PrefsUI

 > PrefsDeckLink

 > PrefsView

126

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Python usage:

Open Preferences at the view page

fu.ShowPrefs(“PrefsView”)

Print possible prefname for the current Fusion version

for v in fu.GetRegList(comp.CT_Prefs).values():

 print(v.GetAttrs()[“REGS_ID”])

 > Lua usage:

-- Open Preferences at the view page

fu:ShowPrefs(“PrefsView”)

-- Print possible prefname for the current Fusion version

for i,v in ipairs(fu:GetRegList(CT_Prefs)) do

 print(v:GetAttrs().REGS_ID)

end

Fusion.ToggleRenderManager()

 Shows or hides the Render Manager.

Fusion.ToggleUtility(id)

 Shows or hides a Utility plugin.

 > Parameters:

 id (string) – id

FuView

class FuView

 Parent class: Object

Members

FuView.ID()

 ID of this View (read-only).

127

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Methods

FuView.Refresh()

 Redraw this view.

GL3DViewer

class GL3DViewer

 Parent class: GLViewer

Methods

GL3DViewer.CenterSelected()

 Centers this view on the selected object.

GL3DViewer.FitAll()

 Fits this view to the entire scene.

GL3DViewer.FitSelected()

 Fits this view to the selected object.

GLImageViewer

class GLImageViewer

 Parent class: GLViewer

Methods

GLImageViewer.DragRoI()

 Lets the user drag out an RoI rectangle.

GLImageViewer.EnableLUT([enable])

 Enables or disables the current View LUT.

 > Parameters:

 enable (boolean) – enable

GLImageViewer.EnableRoI([enable])

 Enables or disables the current View RoI.

 > Parameters:

 enable (boolean) – enable

128

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

GLImageViewer.ExportTo3DLUT()

 Exports the current LUTs to a 3D LUT file.

 > Returns: success

 > Return type: boolean

GLImageViewer.IsLUTEnabled()

 Returns true if the current View LUT is enabled.

 > Returns: enabled

 > Return type: boolean

GLImageViewer.LoadLUTFile([pathname])

 Loads a LUT file, setting or LUT plugin ID into the View LUT.

 > Parameters:

 pathname (string) – pathname

 > Returns: success

 > Return type: boolean

GLImageViewer.LockRoI([enable])

 Locks or unlocks the View RoI.

 > Parameters:

 enable (boolean) – enable

GLImageViewer.SaveLUTFile([pathname])

 Saves current LUTs into a .viewlut file.

 > Parameters:

 pathname (string) – pathname

 > Returns: success

 > Return type: boolean

GLImageViewer.SetRoI()

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Sets the current View RoI region.

GLImageViewer.SetRoI(rect)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Sets the current View RoI region.

 > Parameters:

 rect (table) – rect

129

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

GLImageViewer.SetRoI(auto)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Sets the current View RoI region.

 > Parameters:

 auto (boolean) – auto

GLImageViewer.ShowDoD([enable])

 Enables or disables drawing the current View DoD rectangle.

 > Parameters:

 enable (boolean) – enable

GLImageViewer.ShowLUTEditor()

 Pops up the Editor window for the current View LUT.

GLImageViewer.ShowRoI([enable])

 Enables or disables drawing the current View RoI rectangle.

 > Parameters:

 enable (boolean) – enable

GLPreview

class GLPreview

 Parent class: Preview

Members

GLPreview.View

 Represents the display GLView for this Preview (read-only).

 >Getting:

view = GLPreview.View – (GLView)

GLView

class GLView

 Parent class: FuView

130

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Python usage:

Reach Left GLView of Fusion instance

left = comp.GetPreviewList()[“Left”][“View”]

left.SetBuffer(0)

 > Lua usage:

-- Reach Left GLView of Fusion instance

left = comp:GetPreviewList().Left.View

left:SetBuffer(0)

Members

GLView.CurrentViewer

 Returns the current viewer.

 >Getting:

viewer = GLView.CurrentViewer – (GLViewer)

Methods

GLView.DisableCurrentTools()

 Pass-through the currently selected tools.

GLView.DisableSelectedTools()

 Pass-through the selected tools.

GLView.EnableLUT(enable)

 Enables or disables the current Monitor LUT.

 > Parameters:

enable (boolean) – enable

GLView.EnableStereo(enable)

 Enables or disables 3D stereo display.

 > Parameters:

enable (boolean) – enable

131

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

GLView.GetBuffer()

 Returns which buffer is shown.

 > Returns: buffer

 > Return type: number

GLView.GetLocked()

 Returns true if the display is locked.

 > Returns: enabled

 > Return type: boolean

GLView.GetPos()

 Returns the position of the display.

 In Python use GetPosTable.

 > Returns: x

 > Return type: number

GLView.GetPosTable()

 Returns the position of the display as a table.

 > Returns: pos

 > Return type: table

GLView.GetPrefs()

Retrieve a table of preferences for this view.

 > Returns: prefs

 > Return type: table

GLView.GetPreview([buffer])

Returns the buffer’s Preview.

 > Parameters:

 buffer (number) – buffer

GLView.GetRot()

 Returns the x,y,z rotation of the display in degrees.

 In Python use GetRotTable.

 > Returns: x

 > Return type: number

132

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

GLView.GetRotTable()

 Returns the x,y,z rotation of the display in degrees as a table.

 > Returns: rot

 > Return type: table

GLView.GetScale()

 Returns the scale of the display.

 > Returns: scale

 > Return type: number

GLView.GetSplit()

 Get the split position of the view.

 In Python use GetSplitTable.

 > Returns: x

 > Return type: number

GLView.GetSplitTable()

 Get the split position of the view as a table.

 > Returns: split

 > Return type: table

GLView.GetStereoMethod()

 Returns the method and options being used for stereo display.

 > Returns: method

 > Return type: string

GLView.GetStereoSource()

 Returns the source being used for stereo display.

 > Returns: ABsource

 > Return type: boolean

GLView.GetViewerList()

 Returns a list of available viewers.

 > Returns: viewers

 > Return type: table

GLView.IsLUTEnabled()

 Returns true if the current Monitor LUT is enabled.

 > Returns: enabled

 > Return type: boolean

133

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

GLView.IsStereoEnabled()

 Indicates if stereo display is currently enabled.

 > Returns: enabled

 > Return type: boolean

GLView.IsStereoSwapped()

 Indicates if the left & right stereo eyes are currently swapped.

 > Returns: enable

 > Return type: boolean

GLView.LoadLUTFile(pathname)

 Loads a LUT file, setting or LUT plugin ID into the Monitor LUT.

 > Parameters:

pathname (string) – pathname

 > Returns: success

 > Return type: boolean

GLView.LoadPrefs()

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Saves the current view prefs to a named configuration.

GLView.LoadPrefs(configname)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Saves the current view prefs to a named configuration.

 > Parameters:

configname (string) – configname

GLView.ResetView()

 Resets the display to default position etc.

GLView.SavePrefs()

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Saves the current view prefs to a named configuration.

GLView.SavePrefs(configname)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Saves the current view prefs to a named configuration.

 > Parameters:

configname (string) – configname

134

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

GLView.SetBuffer(buffer)

 Show a particular buffer.

 The SetBuffer function is used to display a specific one of the three possible view options
for the A/B subviews in a view in Fusion. As stated above, 0 = the buffer view that the
function is being run on, 1 = the buffer view that the function is not being run on, 2 = A/B
view. So if the preview window that the function was being run on was the Left B view, the
function would set the display viewer to B if the integer value was 0.

 buffer buffer integer that the view will be set to. Buffer 0 = The Buffer view that is the
currently selected on, 1 = The buffer view that is not the current one, 2 = A/B.

 > Python usage:

Set the buffer to A/B with a 45 degree split at the center

left = comp.GetPreviewList()[“Left”][“View”]

left.SetBuffer(2)

left.SetSplit(0.5, 0.5, 45)

 > Lua usage:

-- Set the buffer to A/B with a 45 degree split at the center

left = comp:GetPreviewList().Left.View

left:SetBuffer(2)

left:SetSplit(.5, .5, 45)

 > Parameters:

buffer (number) – buffer

GLView.SetLocked(enable)
 > Parameters:

enable (boolean) – enable

GLView.SetPos(x, y[, z])

 Set the position of the display.

 Sets the position of the display relative to the center (0, 0). In a 3D GLView the view position
can be set in 3D space.

 x X coordinate in pixels (2D) or unity (3D)

 Y Y coordinate in pixels (2D) or unity (3D)

 Z Z coordinate in unity (3D only)

135

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Parameters:

x (number) – x

y (number) – y

z (number) – z

 > Returns: success

 > Return type: boolean

GLView.SetRot(x, y, z)

 Set the x,y,z rotation of the display in degrees.

 > Parameters:

x (number) – x

y (number) – y

z (number) – z

GLView.SetScale(scale)

 Set the scale of the display.

 The SetScale function is used to set the scale of a view.

 scale the percentage, expressed as a numerical value, that the image in the view will be
scaled by. Percentages are translated to numerical values (50% = .5, 200% = 2.0) with 0
being the view’s “Fit” option.

 > Python usage:

Fit the left view

left = comp.GetPreviewList()[“Left”][“View”]

left.SetScale(0)

 > Lua usage:

-- Fit the left view

left = comp:GetPreviewList().Left.View

left:SetScale(0)

 > Parameters:

scale (number) – scale

GLView.SetSplit(x, y, angle)

 Set the split position of the view.

 Sets the A/B view split based on the x, y, coordinates and the angle.

136

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 x the coordinate along the x axis of the A/B Split view’s center.

 y the coordinate along the y axis of the A/B Split view’s center.

 angle the angle of the A/B Split view line.

 > Python usage:

Set the buffer to A/B with a 45 degree split at the center

left = comp.GetPreviewList()[“Left”][“View”]

left.SetBuffer(2)

left.SetSplit(.5, .5, 45)

 > Lua usage:

-- Set the buffer to A/B with a 45 degree split at the center

left = comp:GetPreviewList().Left.View

left:SetBuffer(2)

left:SetSplit(.5, .5, 45)

 > Parameters:

x (number) – x

y (number) – y

angle (number) – angle

GLView.SetStereoMethod(method[, option1][, option2])

 Sets the method for stereo display.

 > Parameters:

method (string) – method

option1 – option1

option2 – option2

GLView.SetStereoSource(ABsource, stacked[, stackmethod])

 Sets the source for the left & right stereo images.

 > Parameters:

ABsource (boolean) – ABsource

stacked (boolean) – stacked

stackmethod (string) – stackmethod

137

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

GLView.ShowLUTEditor()

 Pops up the Editor window for the current Monitor LUT.

GLView.ShowQuadView(enable)

 Splits the view into four subviews.

 > Parameters:

enable (boolean) – enable

GLView.ShowSubView(enable)

 Enables the inset SubView display.

 > Parameters:

enable (boolean) – enable

GLView.ShowingQuadView()

 Returns true if the view is split into four.

 > Returns: enabled

 > Return type: boolean

GLView.ShowingSubView()
 > Returns true if the inset SubView is currently being displayed.

 > Returns: enabled

 > Return type: boolean

GLView.SwapStereo()

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Swaps left & right stereo eye views.

GLView.SwapStereo(enable)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Swaps left & right stereo eye views.

 > Parameters:

 enable (boolean) – enable

GLView.SwapSubView()

Swaps the SubView with the Main View.

 > Returns: enabled

 > Return type: boolean

138

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

GLViewer

class GLViewer

 Parent class: Object
Parent class for 2D and 3D viewers.

2D image viewers are instances of the GLImageViewer subclass and
have additional methods to set and show the DoD, RoI or LUT.

Please note that most Set-methods need to be followed by a Redraw() call.

 > Python usage:

Reach the Left GLViewer

left = comp.GetPreviewList()[“Left”][“View”]

left_viewer = left.CurrentViewer

if left_viewer != None:

 left_viewer.SetChannel(0)

 left_viewer.Redraw()

 > Lua usage:

-- Reach the Left GLViewer

left = comp:GetPreviewList().Left.View

left_viewer = left.CurrentViewer

if left_viewer ~= nil then

 left_viewer:SetChannel(0)

 left_viewer:Redraw()

end

Methods

GLViewer.AreControlsShown()
Returns true if controls are being displayed on the view.

139

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Returns: enabled

 > Return type: boolean

GLViewer.AreGuidesShown()
Returns true if image guides are being displayed on the view.

 > Returns: enabled

 > Return type: boolean

GLViewer.GetAlphaOverlayColor()
Return which alpha overlay is being used.

 > Returns: color

 > Return type: number

GLViewer.GetAspectCorrection()
Returns true if the viewer is correcting the aspect of images.

 > Returns: enabled

 > Return type: boolean

GLViewer.GetChannel()
Return which channel is shown.

 > Returns: channel

 > Return type: number

GLViewer.GetPos()

 Get the position of the viewer.

 In Python use GetPosTable.

 > Returns: x

 > Return type: number

GLViewer.GetPosTable()
Get the position of the viewer as a table.

 > Returns: pos

 > Return type: table

GLViewer.GetRot()

 Get the rotation angles of the view.

In Python use GetRotTable.

 > Returns: x

 > Return type: number

140

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

GLViewer.GetRotTable()
Get the rotation angles of the view as a table.

 > Returns: rot

 > Return type: table

GLViewer.GetScale()
Get the scale (zoom) of the view.

 > Returns: scale

 > Return type: number

GLViewer.LoadFile(filename)
Load and display the contents of a file.

 > Parameters:

filename (string) – filename

GLViewer.Redraw()
Refreshes the viewer.

GLViewer.ResetView()
Resets the display to default position etc.

GLViewer.SaveFile(filename)
Save the currently displayed parameter.

 > Parameters:

filename (string) – filename

GLViewer.SetAlphaOverlayColor(color)
Select which alpha overlay to use.

 > Parameters:

color (number) – color

GLViewer.SetAspectCorrection(enable)
Enables or disables aspect correction.

 > Parameters:

enable (boolean) – enable

GLViewer.SetChannel(channel, toggle)
Select which channel to show.

 > Parameters:

channel (number) – channel

toggle (boolean) – toggle

141

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

GLViewer.SetPos(x, y[, z])

 Set the position of the viewer.

 > Parameters:

x (number) – x

y (number) – y

z (number) – z

 > Returns: success

 > Return type: boolean

GLViewer.SetRot(x, y, z)

 Set the rotation of the view.

 > Parameters:

x (number) – x

y (number) – y

z (number) – z

GLViewer.SetScale(scale)

 Set the scale (zoom) of the view.

 > Parameters:

scale (number) – scale

GLViewer.ShowControls(enable)

 Shows or hides controls on the view.

 > Parameters:

enable (boolean) – enable

GLViewer.ShowGuides(enable)

 Shows or hides guides on the view.

 > Parameters:

enable (boolean) – enable

Gradient

class Gradient
Parent class: Parameter

142

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Members

Gradient.Value

 The gradient in table form.

 >Getting:

gradient = Gradient.Value – (table)

 > Setting:

Gradient.Value = gradient – (table)

GraphView

class GraphView
Parent class: FuScrollView

Methods

GraphView.DeleteGuides([start][, end])

 Deletes guides between start and end.

 > Parameters:

 start (number) – start

end (number) – end

GraphView.GetClipboard()
Retrieves the tool(s) on the clipboard, as tables and as ASCII text..

 > Returns: clipboard

 > Return type: table

GraphView.GetGuides([start][, end])
Returns a table of snapguide times & names.

 > Parameters:

start (number) – start

end (number) – end

 > Returns: guides

 > Return type: table

GraphView.GoNextKeyTime()
Jumps to next key frame of the active spline.

GraphView.GoPrevKeyTime()
Jumps to previous key frame of the active spline.

143

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

GraphView.Paste(desttime, spline1[, spline2...][, points])

 Paste points to given splines at given time from the Clipboard.

 > Parameters:

desttime (number) – desttime

spline1 (object) – spline1

spline2... (object) – spline2...

points (table) – points

 > Returns: success

 > Return type: boolean

GraphView.SetGuides([guides][, rem_prev])

 Sets snapguide.

 > Parameters:

guides (table) – guides

rem_prev (boolean) – rem_prev

GraphView.ZoomFit()
Changes scale to fit all displayed splines within the view.

GraphView.ZoomIn()
Increases the scale (zoom) of the view.

GraphView.ZoomOut()
Decreases the scale (zoom) of the view.

GraphView.ZoomRectangle()
Note: This method is overloaded and has alternative parameters. See other definitions.

Fill the view with the specified rectangle.

GraphView.ZoomRectangle(x1, y1, x2, y2)
Note: This method is overloaded and has alternative parameters. See other definitions.

 Fill the view with the specified rectangle.

 > Parameters:

x1 (number) – x1

y1 (number) – y1

x2 (number) – x2

y2 (number) – y2

144

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

HotkeyManager

class HotkeyManager
Parent class: LockableObject

Methods

HotkeyManager.GetDefaults()
GetDefaults

HotkeyManager.GetHotkeys()
GetHotkeys

HotkeyManager.GetKeyNames()
GetKeyNames

HotkeyManager.GetModifierNames()
GetModifierNames

HotkeyManager.LoadHotkeys()
LoadHotkeys

HotkeyManager.SaveHotkeys()
SaveHotkeys

HotkeyManager.SetHotkey()
SetHotkey

HotkeyManager.SetHotkeys()
SetHotkeys

Image

class Image
Parent class: Parameter

Members

Image.DataWindow
Rectangle of valid data pixels, in a table (read-only).

 >Getting:

rect = Image.DataWindow – (table)

145

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Image.Depth
Image depth indicator (not in bits) (read-only).

 >Getting:

val = Image.Depth – (number)

Image.Field
Field indicator (read-only).

 >Getting:

val = Image.Field – (number)

Image.Height
Actual image height, in pixels (read-only).

 >Getting:

val = Image.Height – (number)

Image.OriginalHeight
Unproxied image height, in pixels (read-only).

 >Getting:

val = Image.OriginalHeight – (number)

Image.OriginalWidth
Unproxied image width, in pixels (read-only).

 >Getting:

val = Image.OriginalWidth – (number)

Image.OriginalXScale
Unproxied pixel X Aspect (read-only).

 >Getting:

val = Image.OriginalXScale – (number)

Image.OriginalYScale
Unproxied pixel Y Aspect (read-only).

 >Getting:

val = Image.OriginalYScale – (number)

Image.ProxyScale
Image proxy scale multiplier (read-only).

 >Getting:

val = Image.ProxyScale – (number)

146

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Image.Width
Actual image width, in pixels (read-only).

 >Getting:

val = Image.Width – (number)

Image.XOffset
Image X Offset (read-only).

 >Getting:

val = Image.XOffset – (number)

Image.XScale
Pixel X Aspect (read-only).

 >Getting:

val = Image.XScale – (number)

Image.YOffset
Image X Offset (read-only).

 >Getting:

val = Image.YOffset – (number)

Image.YScale
Pixel Y Aspect (read-only).

 >Getting:

val = Image.YScale – (number)

ImageCacheManager

class ImageCacheManager

 Parent class: Object

Methods

ImageCacheManager.FreeSpace()

 FreeSpace

ImageCacheManager.GetSize()

 GetSize

147

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

ImageCacheManager.IsRoom()

 This is useful to see how much room there currently is in the cache manager by checking to
see if a certain number of bytes will fit without needing to purge/flush.

 bytes The number of bytes to check.

 Returns a boolean indicating whether or not there is room in the cache manager for the
number of bytes passed as an argument.

ImageCacheManager.Purge()

 This function allows the cache to be purged exactly as if doing so interactively in Fusion.

IOClass

class IOClass

 Parent class: Object

Methods

IOClass.Close()
Close

IOClass.Flush()
Flush

IOClass.GetFilePos()
GetFilePos

IOClass.GetFileSize()
GetFileSize

IOClass.Read()
Read

IOClass.ReadLine()
ReadLine

IOClass.Seek()
Seek

IOClass.Write()
Write

IOClass.WriteLine()
WriteLine

148

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

KeyFrameView

class KeyFrameView

 Parent class: GraphView

Methods

KeyFrameView.GoNextKeyTime()
Jumps to next key frame of the active spline.

KeyFrameView.GoPrevKeyTime()
Jumps to previous key frame of the active spline.

Link

class Link

 Parent class: LockableObject

Represents the parent class of Input and Outputs.

Members

Link.ID
ID of this Link (read-only).

 >Getting:

id = Link.ID – (string)

Link.Name
Friendly name of this Link (read-only).

 >Getting:

name = Link.Name – (string)

Methods

Link.GetData([name])
Get custom persistent data.

See Composition:GetData().
 > Parameters:

name (string) – name

 > Returns: value

 > Return type: (number|string|boolean|table)

149

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Link.GetTool()
Returns the Tool object that owns this Link.

 > Returns: tool

 > Return type: Tool

Link.SetData(name, value)
Set custom persistent data.

See Composition:SetData().
 > Parameters:

name (string) – name

value ((number|string|boolean|table)) – value

List
class List

 Parent class: LockableObject

Loader
class Loader

 Parent class: ThreadedOperator

Methods

Loader.SetMultiClip(filename[, startframe][, trimin][, trimout])
Gives Loader a MultiClip clip list.

 > Parameters:

startframe (number) – startframe

trimin (number) – trimin

trimout (number) – trimout

MailMessage

class MailMessage

 Parent class: Object

Represents an email message.

Please note that if no explicit server settings are set with
the SetServer, SetLogin and SetPassword

150

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

methods, the default Preferences (Globals -> Network -> Server Settings ...) are used.

If these are not set the recipient server is tried to be reached.

 > Python usage:

mail = fusion.CreateMail()

mail.AddRecipients(“vfx@studio.com, myself@studio.com”)

mail.SetSubject(“Render Completed”)

mail.SetBody(“The job completed.”)

print(mail.SendTable())

status = mail.SendTable().values()

print (status[0]) # success boolean

if len(status) > 1:

 print(status[1]) # error message

 > Lua usage:

mail = fusion:CreateMail()

mail:AddRecipients(“vfx@studio.com, myself@studio.com”)

mail:SetSubject(“Render Completed”)

mail:SetBody(“The job completed.”)

ok,errmsg = mail:Send()

print(ok)

print(errmsg)

Methods

MailMessage.AddAttachment(filename)

 Attaches a filename to the body.

151

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Parameters:

filename (string) – filename

 > Returns: success

 > Return type: boolean

MailMessage.AddRecipients(addresses)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Adds a recipient to the To: list.

 > Parameters:

addresses (string) – addresses

MailMessage.AddRecipients(addresses)
Note: This method is overloaded and has alternative parameters. See other definitions.

Adds a recipient to the To: list.

 > Parameters:

addresses (table) – addresses

MailMessage.GetTable()
Returns the message in the form of a table.

 > Returns: msg

 > Return type: table

MailMessage.RemoveAllAttachments()

 Removes all attachments from the message.

MailMessage.RemoveAllRecipients()

 Removes all recipients from the To: field.

MailMessage.Send()

 Sends the message.

 Return the success as bool and the message.

 Note there is a SendTable method for Python.

 > Returns: success

 > Return type: boolean

MailMessage.SetBody(bodytext)

 Sets the message body.

 > Parameters:

 bodytext (string) – bodytext

152

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

MailMessage.SetHTMLBody(bodyhtml)

 Sets the message body using HTML.

 > Parameters:

 bodyhtml (string) – bodyhtml

MailMessage.SetLogin(login)

 Sets the login to use for authentication.

 > Parameters:

 login (string) – login

MailMessage.SetPassword(password)

 Sets the password to use for authentication.

 > Parameters:

 password (string) – password

MailMessage.SetSender(sender)

 Note: This method is overloaded and has alternative parameters. See other definitions.

Sets the From: field.

 > Parameters:

 sender (string) – sender

MailMessage.SetSender(sender)

 Note: This method is overloaded and has alternative parameters. See other definitions.

Sets the From: field.

 > Parameters:
sender (table) – sender

MailMessage.SetServer(servername)
Sets the outgoing mail server to use.

 > Parameters:

 servername (string) – servername

MailMessage.SetSubject(subject)
Sets the Subject: field.

 > Parameters:
subject (string) – subject

153

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

MenuManager

class MenuManager

 Parent class: LockableObject

Methods

MenuManager.GetMenus()
GetMenus

MenuManager.LoadMenus()
LoadMenus

MenuManager.SaveMenus()
SaveMenus

Object

class Object

Operator

class Operator

 Parent class: Object

Base class for all Tools, Modifiers etc.

Operator Attributes

Attribute Name Type Description

TOOLS_Name string The full name of this tool

TOOLS_Name string The full name of this tool

TOOLB_Visible integer Indicates if this tool is visible on the flow,
or a non-visible tool, such as a modifier.

TOOLB_Locked boolean Indicates if this tool is locked.

TOOLB_PassThrough boolean Indicates if this tool is set to pass-through.

TOOLB_HoldOutput boolean Indicates if this tool is set to hold its
output (not update).

TOOLB_CtrlWZoom integer Indicates if this tool’s control window is
open or closed.

154

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Attribute Name Type Description

TOOLB_NameSet boolean Indicates if this tool’s name has been set
(by the user) or is the default name.

TOOLB_CacheToDisk integer Indicates if this tool is set to cache
itself to disk.

TOOLS_RegID string The RegID of this tool.

TOOLH_GroupParent group
userdata

The associated group object

TOOLNT_EnabledRegion_Start number The point (frame) at which this tool is
enabled, and will start to take effect.

TOOLNT_EnabledRegion_End number The point (frame) at which this tool is
disabled, and will cease to have an effect..

TOOLNT_Region_Start number The point at which this tool can start
providing results.

TOOLNT_Region_End composition
userdata

The point at which this tool stops
providing results.

TOOLN_LastFrameTime number The amount of time (in seconds) taken to
process the most recently rendered frame
by this tool.

TOOLI_Number_o_Inputs number Useful for determining the number
of inputs a tool has (implemented for
3D merges).

TOOLI_ImageWidth integer For image-based tools, these represent
the format of the image most recently
processed by this tool.

TOOLI_ImageHeight integer

TOOLI_ImageField integer

TOOLI_ImageDepth integer

TOOLN_ImageAspectX number

TOOLN_ImageAspectY number

TOOLST_Clip_Name string For clip-based tools (Loader and Saver),
one or more entries for these may be
present in tables to define information on
the clip(s) currently selected into this tool.
Note that these attributes actually return
a table of values of the type indicated
in parenthesis. Each index in the table
represents a clip in the cliplist.

155

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Attribute Name Type Description

TOOLIT_Clip_Width integer

TOOLIT_Clip_Height integer

TOOLIT_Clip_StartFrame integer

TOOLIT_Clip_Length integer

TOOLBT_Clip_IsMultiFrame boolean

TOOLST_Clip_FormatName string

TOOLST_Clip_FormatID string

TOOLNT_Clip_Start number

TOOLNT_Clip_End number

TOOLBT_Clip_Reverse boolean

TOOLBT_Clip_Saving boolean

TOOLBT_Clip_Loop boolean

TOOLIT_Clip_TrimIn integer

TOOLIT_Clip_TrimOut integer

TOOLIT_Clip_ExtendFirst integer

TOOLIT_Clip_ExtendLast integer

TOOLIT_Clip_ImportMode integer

TOOLIT_Clip_PullOffset integer

TOOLIT_Clip_InitialFrame integer

TOOLIT_Clip_AspectMode integer

TOOLIT_Clip_TimeCode integer

TOOLST_Clip_KeyCode string

TOOLST_AltClip_Name string

TOOLIT_AltClip_Width integer

TOOLIT_AltClip_Height integer

TOOLIT_AltClip_StartFrame integer

TOOLIT_AltClip_Length integer

TOOLBT_AltClip_IsMultiFrame boolean

TOOLST_AltClip_FormatName string

TOOLST_AltClip_FormatID string

156

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Members

Operator.Composition

 The composition that this tool belongs to (read-only).

 >Getting:

comp = Operator.Composition – (Composition)

Operator.FillColor
 >Getting:

 color = Operator.FillColor – (table)

 > Setting:

Operator.FillColor = color – (table)

Operator.ID

 Registry ID of this tool (read-only).

 >Getting:

id = Operator.ID – (string)

Operator.Name

 Friendly name of this tool (read-only).

 >Getting:

name = Operator.Name – (string)

Operator.ParentTool

 The parent tool of this tool (read-only).

 That is a group parent if the tool is inside a group or macro.

 >Getting:

parent = Operator.ParentTool – (Tool)

Operator.TextColor

 Color of a tool’s icon text in the Flow view.

 >Getting:

color = Operator.TextColor – (table)

 > Setting:

Operator.TextColor = color – (table)

Operator.TileColor

 Color of a tool’s icon in the Flow view.

 >Getting:

color = Operator.TileColor – (table)

157

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Setting:

Operator.TileColor = color – (table)

Operator.UserControls

 Table of user-control definitions.

 >Getting:

controls = Operator.UserControls – (table)

 > Setting:

Operator.UserControls = controls – (table)

Methods

Operator.AddModifier(input, modifier)

 Creates a modifier and connects it to an input.

 This provides an easy way to animate the controls of a tool.

 input ID of the tool’s Input to be connected to.

 modifier ID of the modifier to be created.

 Returns a boolean value indicating success.

 > Python usage:

myBlur = comp.Blur()

if myBlur.AddModifier(“Blend”, “BezierSpline”):

 myBlur.Blend[0] = 1.0

 myBlur.Blend[100] = 0.0

 > Lua usage:

myBlur = Blur()

if myBlur:AddModifier(“Blend”, “BezierSpline”) then

 myBlur.Blend[0] = 1.0

 myBlur.Blend[100] = 0.0

end

158

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Parameters:

input (string) – input

modifier (string) – modifier

 > Returns: success

 > Return type: boolean

Operator.ConnectInput(input, target)
Connect or disconnect an Input.

The input can be connected to an Output or an Operator,
or to nil, which disconnects the input.

If the target given is an Operator, the Input will be
connected to that Operator’s main Output.

input the ID of an Input to connect

target an Output or Operator object to connect the input to, or nil to disconnect

 > Python usage:

Find a Loader, and connect it to Merge1.Foreground

ldr = comp.FindToolByID(“Loader”)

if ldr and comp.Merge1:

 comp.Merge1.ConnectInput(“Foreground”, ldr)

 > Lua usage:

-- Find a Loader, and connect it to Merge1.Foreground

ldr = comp:FindToolByID(“Loader”)

if ldr and Merge1 then

 print(comp.ActiveTool)

 Merge1:ConnectInput(“Foreground”, ldr)

end

159

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Parameters:

input (string) – input

target ((Tool|Output|nil)) – target

 > Returns: success

 > Return type: boolean

Operator.Delete()

 Delete this tool.

 Removes the tool from the composition. This also releases the handle to the

 Fusion Tool object, setting it to nil.

Operator.FindMainInput(index)

 Returns the tool’s main (visible) input.

 index integer value of 1 or greater.

 > Python usage:

Loop through all main inputs.

i = 1

while True:

 inp = tool.FindMainInput(i)

 if inp is None:

 break

 # Got input

 print(inp.GetAttrs()[“INPS_Name”])

 i+=1

 > Lua usage:

-- Loop through all main inputs.

tool = comp.ActiveTool

i = 1

while true do

 inp = (tool:FindMainInput(i))

160

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 if inp == nil then

 break

 end

 -- Got input

 print (inp:GetAttrs().INPS_Name)

 i = i + 1

end

 > Parameters:

index (number) – index

 > Returns: inp

 > Return type: Input

Operator.FindMainOutput(index)

 Returns the tool’s main (visible) output.

index integer value of 1 or greater.

 > Python usage:

Loop through all main outputs.

i = 1

while True:

 outp = tool.FindMainOutput(i)

 if outp is None:

 break

 # Got output

 print(outp.GetAttrs()[“OUTS_Name”])

 i+=1

161

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Lua usage:

-- Loop through all main outputs.

tool = comp.ActiveTool

i = 1

while true do

 outp = (tool:FindMainOutput(i))

 if outp == nil then

 break

 end

 -- Got output

 print (outp:GetAttrs().OUTS_Name)

 i = i + 1

end

 > Parameters:

index (number) – index

 > Returns: out

 > Return type: Output

Operator.GetChildrenList([selected][, regid])
Returns a list of all children tools, or selected children tools.

This function is useful for finding members of Macro or Group tools.

selected Pass true to get only selected child tools.

regid pass a Registry ID string to get only child tools of that type.

Returns a table of tool objects.

162

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Python usage:

list all tools in a group or macro

for t in comp.ActiveTool.GetChildrenList().values():

 print(t.Name)

 > Lua usage:

-- list all tools in a group or macro

for i,t in pairs(comp.ActiveTool:GetChildrenList()) do

 print(t.Name)

end

 > Parameters:

selected (boolean) – selected

regid (string) – regid

 > Returns: tools

 > Return type: table

Operator.GetControlPageNames()
Returns a table of control page names, indexed by page number.

 > Returns: names

 > Return type: table

Operator.GetCurrentSettings()
Returns the index of the tool’s current settings slot.

A tool has 6 different collections/slots of settings. By default, it uses slot 1.

Returns a numerical index of 1 or greater.

 > Returns: index

 > Return type: number

Operator.GetData([name])

 Get custom persistent data.

 See Composition:GetData().

 > Parameters:

name (string) – name

163

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Returns: value

 > Return type: (number|string|boolean|table)

Operator.GetInput(id[, time])

 Fetches the value of an input at a given time.

 The time argument may be omitted, if the input is not animated.

 A similar result may be obtained by simply indexing the input with the desired time.

 id the ID of the input to be queried.

 time the keyframe time to be queried.

 Returns a number, string or other Parameter object, depending on the DataType of the
queried Input.

 > Python usage:

these lines: the same thing

print(tool:GetInput(“Blend”, 30.0))

print(tool.Blend[30])

 > Lua usage:

-- these lines do the same thing

print(tool:GetInput(“Blend”, 30.0)

print(tool.Blend[30.0]

 > Parameters:

id (string) – id

time (number) – time

 > Returns: value

 > Return type: (number|string|Parameter)

Operator.GetInputList([type])

 Return a table of all inputs on this tool.

 type can be used to filter the results to return only a specific datatype. Valid values include
“Image”, “Number”, “Point”, “Gradient” and “Text”.

 Returns a table containing handles all the Inputs available for the tool.

164

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Python usage:

this Tool script prints out the name

of every control on the selected tool

tool = comp.ActiveTool

x = tool.GetInputList().values()

for inp in x:

 print(inp.GetAttrs()[“INPS_Name”])

 > Lua usage:

-- this Tool script prints out the name

-- of every control on the selected tool

tool = tool or comp.ActiveTool

x = tool:GetInputList()

for i, inp in pairs(x) do

 print(inp:GetAttrs().INPS_Name)

end

 > Parameters:

type (string) – type

 > Returns: inputs

 > Return type: table

Operator.GetKeyFrames()

 Return a table of all keyframe times for this tool.

 Returns a table containing a list of keyframe times, in order, for the tool only. Any animation
splines or modifiers attached to the tool’s inputs are not considered.

 > Returns: keyframes

 > Return type: table

165

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Operator.GetOutputList([type])

 Return a table of all outputs on this tool.

 type can be used to filter the results to return only a specific datatype. Valid values include
“Image”, “Number”, “Point”, “Gradient” and “Text”.

 Returns a table containing handles all the Outputs available for the tool.

 > Python usage:

this Tool script prints out the name

of every output on the selected tool

tool = comp.ActiveTool

x = tool.GetOutputList().values()

for outp in x:

 print(outp.GetAttrs()[“OUTS_Name”])

 > Lua usage:

-- this Tool script prints out the name

-- of every output on the selected tool

tool = tool or comp.ActiveTool

x = tool:GetOutputList()

for i,out in pairs(x) do

 print(out:GetAttrs().OUTS_Name)

end

166

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Parameters:

type (string) – type

 > Returns: outputs

 > Return type: table

Operator.LoadSettings(filename)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Load the tools’s settings from a file or table.

 Used to load .setting files or tables into a tool. This is potentially useful for any number
of applications, such as loading curve data into fusion or to synch updates to tools over
project management systems.

 > Python usage:

settingtable = bmd.readfile(“fusion:\\settings\\ccv_project1.setting”)

comp.ColorCurve1.LoadSettings(settingtable)

Same as

comp.ColorCurve1.LoadSettings(“fusion:\\settings\\ccv_project1.setting”)

 > Lua usage:

settingtable = bmd.readfile(“fusion:\\settings\\ccv_project1.setting”)

ColorCurve1:LoadSettings(settingtable)

-- Same as

ColorCurve1:LoadSettings(“fusion:\\settings\\ccv_project1.setting”)

 > Parameters:

filename (string) – filename

 > Returns: success

 > Return type: boolean

167

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Operator.LoadSettings(settings)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Load the tools’s settings from a file or table.

 Used to load .setting files or tables into a tool. This is potentially useful for any number
of applications, such as loading curve data into fusion or to synch updates to tools over
project management systems.

 > Python usage:

settingtable = bmd.readfile(“fusion:\\settings\\ccv_project1.setting”)

comp.ColorCurve1.LoadSettings(settingtable)

Same as

comp.ColorCurve1.LoadSettings(“fusion:\\settings\\ccv_project1.setting”)

 > Lua usage:

settingtable = rbmd.readfile(“fusion:\\settings\\ccv_project1.setting”)

ColorCurve1:LoadSettings(settingtable)

-- Same as

ColorCurve1:LoadSettings(“fusion:\\settings\\ccv_project1.setting”)

 > Parameters:

settings (table) – settings

 > Returns: success

 > Return type: boolean

Operator.Refresh()

 Refreshes the tool, showing updated user controls.

 Calling Refresh will invalidate the handle to the tool. A new handle is returned and can
be stored.

 Returns a new handle to the refreshed tool.

Operator.SaveSettings(filename)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Save the tool’s current settings to a file or table.

168

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 If a path is given, the tool’s settings will be saved to that file, and a boolean is returned to
indicate success.

 If no path is given, SaveSettings() will return a table of the tool’s settings instead.

 > Parameters:

filename (string) – filename

 > Returns: success

 > Return type: boolean

Operator.SaveSettings(customdata)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Save the tool’s current settings to a file or table.

 If a path is given, the tool’s settings will be saved to that file, and a boolean is returned to
indicate success.

 If no path is given, SaveSettings() will return a table of the tool’s settings instead.

 > Parameters:

customdata (boolean) – customdata

 > Returns: settings

 > Return type: table

Operator.SetCurrentSettings()

 Sets the tool’s current settings slot.

 If the slot is not empty, the function will change all the tool’s Inputs to the settings stored in
that slot.

 A tool has 6 different collections (“slots”) of settings. By default, it uses slot 1. Changing
the current settings slot may change any or all of the tool’s Inputs to new values, or new
animations, stored in the new slot (if any).

 All of the tool’s previous settings are stored in the old slot, before changing to a new slot.

 index numerical index of 1 or greater.

 > Python usage:

import time

tool = comp.ActiveTool

slot = tool.GetCurrentSettings()

169

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

change to new slot, and turn off the effect

tool.SetCurrentSettings(slot + 1)

tool.Blend[comp.CurrentTime] = 0.0

print(tool.Name + “. Before...”)

wait(a few seconds)

time.sleep(3)

change back to the old slot, and turn the effect back on

tool.SetCurrentSettings(slot)

tool.Blend[comp.CurrentTime] = 1.0

print(tool.Name + “. After!”)

 > Lua usage:

local clock = os.clock

function sleep(n) -- seconds

 local t0 = clock()

 while clock() - t0 <= n do end

end

tool = tool or comp.ActiveTool

slot = tool:GetCurrentSettings()

-- change to new slot, and turn off the effect

tool:SetCurrentSettings(slot + 1)

tool.Blend[comp.CurrentTime] = 0.0

print(tool.Name .. “: Before...”)

170

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

-- wait(a few seconds)

sleep(3)

-- change back to the old slot, and turn the effect back on

tool:SetCurrentSettings(slot)

tool.Blend[comp.CurrentTime] = 1.0

print(tool.Name .. “: After!”)

 > Returns: index

 > Return type: number

Operator.SetData(name, value)

 Set custom persistent data.

 See Composition:SetData().

 > Parameters:

name (string) – name

value ((number|string|boolean|table)) – value

Operator.SetInput(id, value, time)

 Sets the value of an input at a given time.

 The time argument may be omitted, if the input is not animated.

 A similar result may be obtained by simply indexing the input with the desired time, and
assigning to that.

 > Parameters:

id (string) – id

value ((number|string|Parameter)) – value

time (number) – time

Operator.ShowControlPage(name)

 Makes the specified control page visible.

 Valid ControlPageNames for the tool can be queried with GetControlPageNames().

 > Parameters:

name (string) – name

171

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Parameter

class Parameter

 Parent class: Object

 Base class for Parameters like Image, Number etc.

Members

Parameter.ID

 ID of this Parameter (read-only).

 >Getting:

 id = Parameter.ID – (string)

Parameter.Metadata()

 Get or set metadata tables.

 Note that setting a Metadata from a regular script will be reset once the Loader re-evaluates
the Output.

 > Python usage:

metadata = comp.Loader1.Output.GetValue().Metadata

print(“Image was loaded from ” + metadata[“Filename”])

 > Lua usage:

metadata = Loader1.Output:GetValue().Metadata

print(“Image was loaded from ” .. metadata.Filename)

Parameter.Name

 Friendly name of this Parameter (read-only).

 >Getting:

 name = Parameter.Name – (string)

Methods

Parameter.GetData([name])

 Get custom persistent data.

 See Composition:GetData().

172

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Parameters:

name (string) – name

 > Returns: value

 > Return type: (number|string|boolean|table)

Parameter.SetData(name, value)

 Set custom persistent data.

 See Composition:SetData().

 > Parameters:

name (string) – name

value ((number|string|boolean|table)) – value

PlainInput

class PlainInput

 Parent class: Link

 Represents an Input.

PlainInput Attributes

Attribute Name Type Description

INPS_Name string The full name of this input.

INPS_ID string The script ID of this input.

INPS_DataType string The type of Parameter (e.g. Number, Point, Text,
Image) this input accepts.

INPS_StatusText string The text shown on the status bar on mouse hover.

INPB_External boolean Whether this input can be animated or connected
to a tool or modifier.

INPB_Active boolean This input’s value is used in rendering.

INPB_Required boolean The tool’s result requires a valid Parameter from
this input.

INPB_Connected boolean The input is connected to another tool’s Output.

INPI_Priority integer Used to determine the order in which the tool’s
inputs are fetched.

INPID_InputControl string The ID of the type of tool window control used by
the input.

173

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Attribute Name Type Description

INPID_PreviewControl string The ID of the type of display view control used by
the input.

INPB_Disabled boolean The input will not accept new values.

INPB_DoNotifyChanged boolean The tool is notified of changes to the value of
the input.

INPB_Integer boolean The input rounds all numbers to the
nearest integer.

INPI_NumSlots integer The number of values from different times that
this input can fetch at once.

INPB_ForceNotify boolean The tool is notified whenever a new parameter
arrives, even if it is the same value.

INPB_InitialNotify boolean The tool is notified at creation time of the initial
value of the input.

INPB_Passive boolean The value of this input will not affect the rendered
result, and does not create an Undo event
if changed.

INPB_InteractivePassive boolean The value of this input will not affect the rendered
result, but it can be Undone if changed.

INPN_MinAllowed number Minimum allowed value - any numbers lower than
this value are clipped.

INPN_MaxAllowed number Maximum allowed value - any numbers higher
than this value are clipped.

INPN_MinScale number The lowest value that the input’s control will
normally display.

INPN_MaxScale number The highest value that the input’s control will
normally display.

INPI_IC_ControlPage integer Determines which tab of a tool’s control window
that the input’s control is displayed on.

INPI_IC_ControlGroup integer When multiple inputs share a single compound
window control, they must all have the same
Control Group value.

INPI_IC_ControlID integer When multiple inputs share a single compound
window control, they must all have different
Control ID values.

174

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Methods

PlainInput.ConnectTo()

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Connect the Input to an Output.

 Note that ConnectTo is not needed to connect inputs and outputs. Setting an input equal
to an output behaves the same.

 out is equal to an output of some sort that will be connected to the input that the function
is run on. Will disconnect the input from any outputs if connected to a nil value.

 > Python usage:

mybg = comp.Background()

myblur = comp.Blur()

Connect

myblur.Input.ConnectTo(mybg.Output)

Disconnect

myblur.Input.ConnectTo()

Now the same with the = operator

Connect

myblur.Input = mybg.Output

Disconnect

myblur.Input = None

 > Lua usage:

mybg = Background()

myblur = Blur()

-- Connect

myblur.Input:ConnectTo(mybg.Output)

-- Disconnect

myblur.Input:ConnectTo()

175

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

-- Now the same with the = operator

-- Connect

myblur.Input = mybg.Output

-- Disconnect

myblur.Input = nil

 > Returns: success

 > Return type: boolean

PlainInput.ConnectTo(out)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Connect the Input to an Output.

 Note that ConnectTo is not needed to connect inputs and outputs. Setting an input equal
to an output behaves the same.

 out is equal to an output of some sort that will be connected to the input that the function
is run on. Will disconnect the input from any outputs if connected to a nil value.

 > Python usage:

mybg = comp.Background()

myblur = comp.Blur()

Connect

myblur.Input.ConnectTo(mybg.Output)

Disconnect

myblur.Input.ConnectTo()

Now the same with the = operator

Connect

myblur.Input = mybg.Output

Disconnect

myblur.Input = None

176

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Lua usage:

mybg = Background()

myblur = Blur()

-- Connect

myblur.Input:ConnectTo(mybg.Output)

-- Disconnect

myblur.Input:ConnectTo()

-- Now the same with the = operator

-- Connect

myblur.Input = mybg.Output

-- Disconnect

myblur.Input = nil

 > Parameters:

out (Output) – out

 > Returns: success

 > Return type: boolean

PlainInput.GetConnectedOutput()

 Returns the output that this input is connected to.

 Note by design an Input can only be connected to a single Output, while an Output might
be branched and connected to multiple Inputs.

 > Returns: out

 > Return type: Output

PlainInput.GetExpression()

 Returns the expression string shown within the Input’s Expression field, if any, or nil if not.

 Simple expressions can be very useful for automating the relationship between controls,
especially in macros and commonly-used comps.

PlainInput.GetKeyFrames()

 Return a table of all keyframe times for this input. If a tool control is not animated with a
spline this function will return nil.

177

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 The GetKeyFrames() function is used to determine what frames of an input have been
keyframed on a spline. It returns a table that shows at what frames the user has defined key
frames for the input.

 > Returns: keyframes

 > Return type: table

PlainInput.HideViewControls(hide)

 Hides or shows the view controls for this input.

 Use this function to hide or expose a view control in the display view.

 hide if set or true then hide the controls else show them.

 > Python usage:

Hide Center position transform controls

comp.Transform1.Center.HideViewControls()

Show Center position transform controls

comp.Transform1.Center.HideViewControls(False)

 > Lua usage:

-- Hide Center position transform controls

Transform1.Center:HideViewControls()

-- Show Center position transform controls

Transform1.Center:HideViewControls(false)

 > Parameters:

hide (boolean) – hide

PlainInput.HideWindowControls(hide)

 Hides or shows the window controls for this input.

 Use this function to hide or expose a window control in the tool properties window. For
instance, this could be used to hide all gamma controls on Brightness / Contrasts to prevent
user manipulation.

 hide if set or true then hide the controls else show them.

178

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Python usage:

Hide Center from properties

comp.Transform1.Center.HideWindowControls()

Show Center in properties

comp.Transform1.Center.HideWindowControls(False)

 > Lua usage:

-- Hide Center from properties

Transform1.Center:HideWindowControls()

-- Show Center in properties

Transform1.Center:HideWindowControls(false)

 > Parameters:

hide (boolean) – hide

PlainInput.SetExpression()

 This function reveals the expression field for the Input, and sets it to the given string.

 Simple expressions can be very useful for automating the relationship between controls,
especially in macros and commonly-used comps.

 > Python usage:

Make Lift and Gamma relate to Gain

comp.BrightnessContrast1.Lift.SetExpression(“Gain * 0.7”)

comp.BrightnessContrast1.Gamma.SetExpression(“Gain * 0.4”)

 > Lua usage:

-- Make Lift and Gamma relate to Gain

BrightnessContrast1.Lift:SetExpression(“Gain * 0.7”)

BrightnessContrast1.Gamma:SetExpression(“Gain * 0.4”)

179

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

PlainInput.ViewControlsVisible()

 Returns the visible state of the view controls for this input.

 > Returns: hidden

 > Return type: boolean

PlainInput.WindowControlsVisible()

 Returns the visible state of the window controls for this input.

 > Returns: hidden

 > Return type: boolean

PlainOutput

class PlainOutput

 Parent class: Link

 Represents an Output.

PlainOutput Attributes

Attribute Name Type Description

OUTS_Name string The name of the Output

OUTS_ID string The Output’s unique ID string

OUTS_DataType string The type of Parameter that this Output uses

Methods

PlainOutput.ClearDiskCache(start, end)
Clears frames from the disk cache.

start the frame to start purging the cache at (inclusive).

end the last frame to be purged (inclusive).

 > Parameters:

start (number) – start

end (number) – end

 > Returns: success

 > Return type: boolean

180

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

PlainOutput.EnableDiskCache()

 Controls disk-based caching.

 Enable Enables or disables the cache.

 Path A valid path to cache the files at.

 LockCache Locks the cache, preventing invalidation of existing cache files when upstream
tools are modified. Use with extreme caution, as cache files may become out of date.

 LockBranch Locks all upstream tools (defaults to false).

 Delete Deletes the cache that might already exist at Path (defaults to false).

 PreRender Render now to create the cache (defaults to true).

 UseNetwork Use network rendering when prerendering (defaults to false).

 Returns boolean if successful as well as a string to the path of the cache.

 > Python usage:

comp.BC1.Output.EnableDiskCache(True,“c:\\temp\\BC.0000.raw”)

 > Lua usage:

BC1.Output:EnableDiskCache(true,“c:\\temp\\BC.0000.raw”)

 > Returns: success

 > Return type: boolean

PlainOutput.GetConnectedInputs()

 Returns a table of Inputs connected to this Output.

 The GetConnectedInputs function is used to determine what inputs are using a
given output.

 Note by design an Input can only be connected to a single Output, while an Output might
be branched and connected to multiple Inputs.

PlainOutput.GetDoD([time][, flags][, proxy])

 Returns the Domain of Definition at the given time.

 time The frame to fetch the value for (default is the current time).

 reqflags Quality flags (default is final quality).

 proxy Proxy level (default is no proxy).

 The returned table has four integers containing the DoD of the tool’s output in the order
left, bottom, right, top.

181

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Parameters:

time (number) – time

flags (number) – flags

proxy (number) – proxy

 > Returns: dod

 > Return type: table

PlainOutput.GetValue()

 Returns the value at the given time.

 Useful for retrieving the result of a chain of tools. It does this by triggering a render (if
cached values are not found) of all tools upstream of the Output.

 time The frame to fetch the value for (default is the current time).

 reqflags Quality flags (default is final quality).

 proxy Proxy level (default is no proxy).

 Returned value may be nil, or a variety of different types:

 Number returns a number Point returns a table with X and Y members Text returns a string
Clip returns the filename string Image returns an Image object

 attrs is a table with the following entries:

 Valid table with numeric Start and End entries DataType string ID for the parameter type
TimeCost time take to render this parameter

 > Returns: value

 > Return type: Parameter

PlainOutput.ShowDiskCacheDlg()

 Displays Cache-To-Disk dialog for user interaction.

 Note this is a modal dialog. The script execution waits for the user to dismiss the dialog.

 Return false if canceled, else true.

 > Returns: success

 > Return type: boolean

PolylineMask

class PolylineMask

 Parent class: MaskOperator

182

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Methods

PolylineMask.ConvertToBSpline()
Converts to b-spline polyline.

PolylineMask.ConvertToBezier()
Converts to Bezier polyline.

PolylineMask.GetBezierPolyline(time[, which])
Get a table of bezier polyline.

 > Parameters:

time (number) – time

which (string) – which

 > Returns: poly

 > Return type: table

Preview

class Preview

 Parent class: PlainInput

Methods

Preview.Close()

 Closes the current clip.

Preview.Create(tool[, filename])

 Renders a new preview clip.

 > Parameters:

tool (Tool) – tool

filename (string) – filename

 > Returns: success

 > Return type: boolean

Preview.DisplayImage(img)

 Displays an Image object.

 > Parameters:

img (Image) – img

 > Returns: success

 > Return type: boolean

183

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Preview.IsPlaying()

 Indicates if the preview is currently playing.

 > Returns: playing

 > Return type: boolean

Preview.Open(filename)

 Opens a filename for seeking and playback.

 > Parameters:

filename (string) – filename

 > Returns: success

 > Return type: boolean

Preview.Play([reverse])

 Plays the current clip.

 > Parameters:

reverse (boolean) – reverse

Preview.Seek(frame)

 Seeks to specified frame.

 > Parameters:

frame (number) – frame

Preview.Stop()

 Stops playback.

Preview.ViewOn(tool)

 Attaches a Preview to a Tool to display its output.

 > Parameters:

tool (Tool) – tool

 > Returns: success

 > Return type: boolean

QueueManager

class QueueManager

 Parent class: LockableObject

 Represents the QueueManager.

184

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

QueueManager Attributes

Attribute Name Type Description

RQUEUEB_Paused boolean True if rendering is currently paused, and no
jobs are being rendered.

RQUEUEB_Verbose boolean True if Verbose Logging is currently enabled.

RQUEUES_QueueName string The name of the file the queue has been
loaded from, or saved to, if any.

 > Python usage:

Access to the QueueManager

qm = fusion.RenderManager

 > Lua usage:

-- Access to the QueueManager

qm = fusion.RenderManager

Methods

QueueManager.AddItem()

 AddItem

QueueManager.AddJob(filename[, groups][, frames][, endscript])

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Adds a job to the list.

 This function allows a user to add jobs remotely to the Fusion Render Manager, either
through a standalone script or through the Fusion interface. This is potentially useful for the
batch adding of jobs.

filename A valid path for a job to be added to the render manager.

groups A string listing the slave groups (comma separated)
to render this job on. Defaults to “all”.

frames The set of frames to render, e.g. “1..150,155,160”. If nil or
unspecified, the comp’s saved frame range will be used.

endscript Full pathname of a script to be executed when this job has completed
(available from the RenderJob object as the RJOBS_CompEndScript attribute).

185

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 Returns the RenderJob object just created in the queue manager.

 > Parameters:

filename (string) – filename

groups (string) – groups

frames (string) – frames

endscript (string) – endscript

 > Returns: job

 > Return type: RenderJob

QueueManager.AddJob(args)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Adds a job to the list.

 This function allows a user to add jobs remotely to the Fusion Render Manager, either
through a standalone script or through the Fusion interface. This is potentially useful for the
batch adding of jobs.

filename A valid path for a job to be added to the render manager.

groups A string listing the slave groups (comma separated)
to render this job on. Defaults to “all”.

frames The set of frames to render, e.g. “1..150,155,160”. If nil or
unspecified, the comp’s saved frame range will be used.

endscript Full pathname of a script to be executed when this job has completed
(available from the RenderJob object as the RJOBS_CompEndScript attribute).

Returns the RenderJob object just created in the queue manager.

 > Parameters:

args (table) – args

 > Returns: job

 > Return type: RenderJob

QueueManager.AddSlave(name[, groups][, unused])

 Adds a slave to the slave list.

 This function allows a user to add jobs remotely to the Fusion Render Manager, either
through a standalone script or through the Fusion interface. This is potentially useful for the
batch adding of jobs.

name the slave’s hostname or IP address.

groups the render groups to join (this defaults to “all”).

186

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

The RenderSlave object just created in the queue manager.

 > Parameters:

name (string) – name

groups (string) – groups

unused (boolean) – unused

 > Returns: slave

 > Return type: RenderSlave

QueueManager.AddWatch()

 AddWatch

QueueManager.DeleteItem()

 DeleteItem

QueueManager.GetGroupList()

 Get a list of all slave groups.

Returns a table of all the various groups used by the slaves within this QueueManager.

 > Returns: groups

 > Return type: table

QueueManager.GetID()

 GetID

QueueManager.GetItemList()

 GetItemList

QueueManager.GetJobFromID()

 GetJobFromID

QueueManager.GetJobList()

 Get the list of jobs to render.

 Returns a table with RenderJob objects that represent the jobs currently in the queue
manager. Like any other object within Fusion, these objects have attributes that indicate
information about the status of the object, and functions that can query or manipulate
the object.

187

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Python usage:

Print all RenderJobs in Queue.

qm = fusion.RenderManager

joblist = qm.GetJobList().values()

for job in joblist:

 print(job.GetAttrs()[“RJOBS_Name”])

 > Lua usage:

-- Print all RenderJobs in Queue.

qm = fusion.RenderManager

joblist = qm:GetJobList()

for i, job in pairs(joblist) do

 print(job:GetAttrs().RJOBS_Name)

end

 > Returns: jobs

 > Return type: table

QueueManager.GetJobs()
Get tables with current RenderJob information.

QueueManager.GetRootData()
GetRootData

QueueManager.GetSchemaList()
GetSchemaList

QueueManager.GetSlaveFromID()
GetSlaveFromID

QueueManager.GetSlaveList()
Get the list of available slaves.

This function returns a table with RenderSlave objects that represent
the slaves currently listed in the queue manager.

188

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Python usage:

Print all RenderSlaves in Queue.

qm = fusion.RenderManager

slavelist = qm.GetSlaveList().values()

for slave in slavelist:

 print(slave.GetAttrs()[“RSLVS_Name”])

 > Lua usage:

-- Print all RenderSlaves in Queue.

qm = fusion.RenderManager

slavelist = qm:GetSlaveList()

for i, slave in pairs(slavelist) do

 print(slave:GetAttrs().RSLVS_Name)

end

 > Returns: slaves

 > Return type: table

QueueManager.GetSlaves()
Get tables with current RenderSlave information.

QueueManager.LoadQueue(filename)
Loads a list of jobs to do.

This function allows a script to load a Fusion Studio Render Queue file,
containing a list of jobs to complete, into the queue manager.

filename path to the queue to load.

 > Parameters:

filename (string) – filename

QueueManager.LoadSlaveList([filename])
Loads a list of slaves to use.

189

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Parameters:

filename (string) – filename

 > Returns: success

 > Return type: boolean

QueueManager.Log(message)
Writes a message to the Render Log.

Write messages to the render manager’s log. This is useful for triggering
custom notes for compositions submitted to the manager.

 > Parameters:

message (string) – message

QueueManager.MoveJob(job, offset)
Moves a job up or down the list.

Changes the priority of jobs in the render manager by an offset.

job the RenderJob to move.

offset how far up or down the job list to move it (negative numbers will move it upwards).

 > Python usage:

Moves all jobs called “master” to the top of the queue

or at least up one hundred entries.

qm = fusion.RenderManager

jl = qm.GetJobList().values()

for job in jl:

 if “master” in job.GetAttrs()[“RJOBS_Name”]:

 qm.MoveJob(job,-100)

 > Lua usage:

-- Moves all jobs called “master” to the top of the queue

-- or at least up one hundred entries.

190

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

qm = fusion.RenderManager

jl = qm:GetJobList()

for i, job in pairs(jl) do

 if job:GetAttrs().RJOBS_Name:find(“master”) then

 qm:MoveJob(job,-100)

 end

end

 > Parameters:

job (RenderJob) – job

offset (number) – offset

QueueManager.NetJoinRender()
NetJoinRender

QueueManager.RemoveJob(job)

 Removes a job from the list.

 > Parameters:

job (RenderJob) – job

QueueManager.RemoveSlave(slave)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Removes a slave from the slave list.

 > Parameters:

slave (RenderSlave) – slave

QueueManager.RemoveSlave(slave)

 Note: This method is overloaded and has alternative parameters. See other definitions.

 Removes a slave from the slave list.

 > Parameters:

slave (string) – slave

191

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

QueueManager.RemoveWatch()
RemoveWatch

QueueManager.SaveQueue(filename)
Saves the current list of jobs.

filename the location to save the queue in.

This function save the currently loaded queue in the render manager to a file.

 > Parameters:

filename (string) – filename

QueueManager.SaveSlaveList([filename])
Saves the current list of slaves.

 > Parameters:

filename (string) – filename

 > Returns: success

 > Return type: boolean

QueueManager.ScanForSlaves()

 Scans local network for new slaves.

 This function locates all machines on the local network (local subnet only), queries each
to find out if they are currently running a copy of Fusion then adds them to the manager’s
Slaves list.

QueueManager.Start()
Start

QueueManager.Stop()
Stop

QueueManager.UpdateItem()
UpdateItem

Registry

class Registry

 Represents the registry.

192

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Registry Attributes

Attribute Name Type Description

REGS_Name string Specifies the full name of
the class represented by this
registry entry.

REGS_ScriptName boolean Specifies the scripting name of
the class represented by this
registry entry. If not specified,
the full name defined by REGS_
Name is used.

REGS_HelpFile string The help file and ID for the class.

REGI_HelpID integer The help file and ID for the class.

REGI_HelpTopicID integer The help file and ID for the class.

REGS_OpIconString boolean Specifies the toolbar icon text
used to represent the class.

REGS_OpDescription integer Specifies a description of
the class.

REGS_OpToolTip boolean Specifies a tooltip for the class
to provide a longer name or
description.

REGS_Category integer Specifies the category for the
class, defining a position in the
Tools menu for tool classes.

REGI_ClassType REGI_ClassType2 integer Specifies the type of this
class, based on the classtype
constants.

REGI_ID string A unique ID for this class.

REGI_OpIconID string A resource ID for a bitmap to
be used for toolbar images for
this class.

REGB_OpNoMask integer Indicates if this Tool class cannot
deal with being masked.

193

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Attribute Name Type Description

REGI_DataType string table Specifies a data type RegID
dealt with by this class.

REGI_TileID number Specifies a resource ID used for
the tile image by this class.

REGB_CreateStaticPreview integer Indicates that a preview object
is to be created at startup of
this type.

REGB_CreateFramePreview boolean Indicates that a preview object
is to be created for each new
frame window.

REGB_Preview_CanDisplayImage

REGB_Preview_CanCreateAnim

REGB_Preview_CanPlayAnim

REGB_Preview_CanSaveImage

REGB_Preview_CanSaveAnim

REGB_Preview_CanCopyImage

REGB_Preview_CanCopyAnim

REGB_Preview_CanRecord

REGB_Preview_UsesFilenames

REGB_Preview_CanNetRender

boolean Defines various capabilities of a
preview class.

REGI_Version integer Defines the version number of
this class or plugin.

REGI_PI_DataSize number Defines a custom data size for
AEPlugin classes.

REGB_Unpredictable string Indicates if this tool class is
predictable or not. Predictable
tools will generate the same
result given the same set of
input values, regardless of time.

REGI_InputDataType integer Specifies a data type RegID
dealt with by the main inputs of
this class.

194

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Attribute Name Type Description

REGB_OperatorControl integer Indicates if this tool class
provides custom overlay
control handling.

REGB_Source_GlobalCtrls number Indicates if this source tool class
has global range controls.

REGB_Source_SizeCtrls integer Indicates if this source tool class
has image resolution controls.

REGB_Source_AspectCtrls integer Indicates if this source tool class
has image aspect controls..

REGB_NoAutoProxy boolean Indicates if this tool class does
not want things to be auto-
proxied when it is adjusted.

REGI_Logo boolean Specifies a resource ID of a
company logo for this class.

REGI_Priority boolean Specifies the priority of this class
on the registry list.

REGB_NoBlendCtrls boolean Indicates if this tool class does
not have blend controls.

REGB_NoObjMatCtrls boolean Indicates if this tool class does
not have Object/Material
selection controls.

REGB_NoMotionBlurCtrls boolean Indicates if this tool class does
not have Motion Blur controls.

REGB_NoAuxChannels boolean Indicates if this tool class cannot
deal with being given Auxiliary
channels (such as Z, ObjID, etc)

REGB_EightBitOnly boolean Indicates if this tool class cannot
deal with being given greater
than 8 bit per channel images.

REGB_ControlView boolean Indicates if this class is a control
view class.

195

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Attribute Name Type Description

REGB_NoSplineAnimation boolean Specifies that this data type
(parameter class) cannot be
animated using a spline.

REGI_MergeDataType integer Specifies what type of data
this merge tool class is capable
of merging.

REGB_ForceCommonCtrls boolean Forces the tool to have common
controls like motion blur, blend
etc, even on modifiers.

REGB_Particle_ProbabilityCtrls

REGB_Particle_SetCtrls

REGB_Particle_AgeRangeCtrls

REGB_Particle_RegionCtrls

REGB_Particle_RegionModeCtrls

REGB_Particle_StyleCtrls

REGB_Particle_EmitterCtrls

REGB_Particle_RandomSeedCtrls

boolean Specifies that particle tools
should have (or not have) various
standard sets of controls.

REGI_Particle_DefaultRegion integer Specifies the RegID of a
default Region for this particle
tool class.

REGI_Particle_DefaultStyle integer Specifies the RegID of a default
Style for this particle tool class.

REGI_MediaFormat_Priority integer Specifies the priority of a media
format class.

REGS_MediaFormat_FormatName string Specifies the name of a media
format class

REGST_MediaFormat_Extension string Specifies the extensions
supported by a media
format class

196

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Attribute Name Type Description

REGB_MediaFormat_CanLoad

REGB_MediaFormat_CanSave

REGB_MediaFormat_CanLoadMulti

REGB_MediaFormat_CanSaveMulti

REGB_MediaFormat_WantsIOClass

REGB_MediaFormat_LoadLinearOnly

REGB_MediaFormat_SaveLinearOnly

REGB_MediaFormat_CanSaveCompressed

REGB_MediaFormat_OneShotLoad

REGB_MediaFormat_OneShotSave

REGB_MediaFormat_CanLoadImages

REGB_MediaFormat_CanSaveImages

REGB_MediaFormat_CanLoadAudio

REGB_MediaFormat_CanSaveAudio

REGB_MediaFormat_CanLoadText

REGB_MediaFormat_CanSaveText

REGB_MediaFormat_CanLoadMIDI

REGB_MediaFormat_CanSaveMIDI

REGB_MediaFormat_
ClipSpecificInputValues

REGB_MediaFormat_
WantsUnbufferedIOClass

boolean Specify various capabilities of a
media format class

REGB_ImageFormat_CanLoadFields

REGB_ImageFormat_CanSaveField

REGB_ImageFormat_CanScale

REGB_ImageFormat_CanSave8bit

REGB_ImageFormat_CanSave24bit

REGB_ImageFormat_CanSave32bi

boolean Specify various capabilities of an
image format class

197

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Members

Registry.ID
ID of this Registry node (read-only).

 >Getting:

id = Registry.ID – (string)

Registry.Name

 Friendly name of this Registry node (read-only).

 >Getting:

name = Registry.Name – (string)

Registry.Parent

 Parent of this Registry node (read-only).

 >Getting:
parent = Registry.Parent – (Registry)

Methods
Registry.IsClassType()

 Returns whether a tool’s ID or any of its parent’s IDs is a particular Registry ID.

 > Returns: matched

 > Return type: boolean

Registry.IsRegClassType()

Returns whether a tool is a particular Registry ClassType.

 > Returns: matched

 > Return type: boolean

RenderJob

class RenderJob

 Parent class: Object

 Represents a RenderJob.

198

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

RenderJob Attributes

Attribute Name Type Description

RJOBS_Status string The current status of the job as String.

RJOBB_Resumable boolean

RJOBS_CompEndScript string

RJOBN_CompID number

RJOBS_QueuedBy string

RJOBB_IsRemoving boolean

RJOBB_Paused boolean Indicates if the Job is paused.

RJOBS_Name string The filename of the Job.

RJOBB_DontClose boolean

RJOBN_TimeOut number The timeout of the job in minutes.

RJOBN_Status number Legacy status indicator for scripts that were
reliant on the old numeric index for job status.

0. Not Rendered

1. Incomplete

2. Done

3. Failed

4. Paused

5. Submitted

6. Rendering

7. Aborting

RJOBN_RenderingFrames number The number of currently rendering frames.

RJOBN_RenderedFrames number The number of frames rendered in the job.

RJOBID_ID string The UUID of the job for Fusion’s
internal tracking.

199

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Python usage:

Adds the current composition as new job

and print all RenderJobs in Queue.

qm = fusion.RenderManager

qm.AddJob(comp.GetAttrs()[“COMPS_FileName”])

joblist = qm.GetJobList().values()

for job in joblist:

 print(job.GetAttrs()[“RJOBS_Name”])

 > Lua usage:

-- Adds the current composition as new job

-- and print all RenderJobs in Queue.

qm = fusion.RenderManager

qm:AddJob(comp:GetAttrs().COMPS_FileName)

joblist = qm:GetJobList()

for i, job in pairs(joblist) do

 print(job:GetAttrs().RJOBS_Name)

end

Methods

RenderJob.ClearCompletedFrames()

 Clears the list of completed frames, restarting the render.

RenderJob.GetFailedSlaves()

 Lists all slaves that failed this job.

200

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 This function returns a table containing all slaves that were assigned to this job but have
been unable to load the comp, or to render a frame that was assigned to them.

 These slaves are no longer participating in the job, but can be added back to the job by
using RetrySlave().

 > Returns: failedslaves

 > Return type: table

RenderJob.GetFrames()

 Returns the total set of frames to be rendered.

 > Returns: frames

 > Return type: string

RenderJob.GetRenderReport()

 GetRenderReport

RenderJob.GetSlaveList()

 Gets a table of slaves assigned to this job.

 > Returns: slaves

 > Return type: table

RenderJob.GetUnrenderedFrames()

 Returns the remaining frames to be rendered.

 The frames in the returned string is separated by commas. Contiguous frames are given as
a range in the form <first>..<last>.

 > Returns: frames

 > Return type: string

RenderJob.IsRendering()
Returns true if job is currently rendering.

 > Returns: rendering

 > Return type: boolean

RenderJob.RetrySlave([slave])

 Attempts to reuse slaves that have previously failed.

 The job manager will place them back on the active list for the job, and attempt to assign
frames to them again.

 slave a RenderSlave object, assigned to this job, that has previously failed to render a frame
assigned to it. If slave is not specified, all failed slaves will be retried.

 > Parameters:

slave (RenderSlave) – slave

201

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

RenderJob.SetFrames(frames)

 Specifies the set of frames to render.

 frames a string with valid formatting for frames to be rendered by the job. Frame numbers
should be separated by commas, without spaces, and ranges of frames are denoted by
<first>..<last>.

 > Python usage:

Set the frames to render on the first job in queue

job = fusion.RenderManager.GetJobList()[1]

job.SetFrames(“1..50,55,60,75,80..100”)

 > Lua usage:

-- Set the frames to render on the first job in queue

job = fusion.RenderManager:GetJobList()[1]

job:SetFrames(“1..50,55,60,75,80..100”)

 > Parameters:

frames (string) – frames

RenderJob._Heartbeat()
_Heartbeat

RenderSlave

class RenderSlave

 Parent class: LockableObject

Represents a RenderSlave.

202

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

RenderSlave Attributes

Attribute Name Type Description

RSLVS_Status string The current status of the slave.

RSLVN_Status number The current status of the slave as number.

0. Scanning

1. Idle

2. Failed

3. Busy

4. Assigning Job

5. Connecting

6. Checking Settings

7. Loading Comp

8. Starting Render

9. Rendering

10. Ending Render

11. Disconnecting

12. Offline

13. Disabled

14. Unused

RSLVS_IP string The IP address of the slave machine.

RSLVID_ID string The ID of the job.

RSLVS_Name string The network name of the slave being used.

RSLVB_IsUnused boolean Indicates if the slave is unused.

RSLVS_Version string The version number of the slave.

RSLVS_Groups string The assigned group of the slave.

RSLVN_RenderingComp number The comp ID number that it’s currently rendering.

RSLVB_IsRemoving boolean If the slave is being removed from the queue.

RSLVB_IsFailed boolean If the slave has failed enough times to remove it
from further jobs.

203

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 > Python usage:

Print all RenderSlaves in Queue.

qm = fusion.RenderManager

slavelist = qm.GetSlaveList().values()

for slave in slavelist:

 print(slave.GetAttrs()

 > Lua usage:

-- Print all RenderSlaves in Queue.

qm = fusion.RenderManager

slavelist = qm:GetSlaveList()

for i, slave in pairs(slavelist) do

 print(slave:GetAttrs().RSVLS_Name)

end

Methods

RenderSlave.Abort()
Cease rendering, and quit the current job.

RenderSlave.GetJob()
Return the slave’s current RenderJob object, if any.

RenderSlave.IsDisconnecting()

 True if slave is disconnecting from a job.

 Sometimes when a slave is disconnecting from the render manager object, it will take a
few seconds to actually disconnect. During this time, it will not show up interactively in the
Render Manager’s slave list, however, it will show up in the table returned by GetSlaveList().
As such, this function was added to easily tell if a RenderSlave is currently disconnecting.

 Returns a boolean value indicating whether the slave’s RSLVB_IsDisconnecting attribute is
currently set to false.

204

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

RenderSlave.IsIdle()
True if slave has no job and nothing to do.

 Returns a boolean value indicating whether the slave’s RSLVB_IsIdle attribute is currently
set to false.

RenderSlave.IsProcessing()
True if slave is busy.

Returns a boolean value indicating whether the slave is currently processing a frame.

ScriptServer

class ScriptServer

Methods

ScriptServer.AddHost()
AddHost

ScriptServer.Connect()
Connect

ScriptServer.FindHost()
FindHost

ScriptServer.GetHostList()
GetHostList

ScriptServer.RemoveHost()
RemoveHost

ScriptServer.StartHost()
StartHost

SourceOperator

class SourceOperator
Parent class: ThreadedOperator

TimeRegion

class TimeRegion
Parent class: List

205

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Members
TimeRegion.End

 >Getting:

val = TimeRegion.End – (number)

TimeRegion.Start
 >Getting:

val = TimeRegion.Start – (number)

Methods

TimeRegion.FromFrameString(frames)
Reads a string description.

 > Parameters:

frames (string) – frames

TimeRegion.FromTable(frames)

Reads a table of {start, end} pairs.

 > Parameters:

frames (table) – frames

TimeRegion.ToFrameString()

Returns a string description.

 > Returns: frames

 > Return type: string

TimeRegion.ToTable()

Returns a table of {start, end} pairs.

 > Returns: frames

 > Return type: table

TransformMatrix

class TransformMatrix
Parent class: Parameter

Members

TransformMatrix.Depth
Image depth indicator (not in bits) (read-only).

206

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

 >Getting:

val = TransformMatrix.Depth – (number)

TransformMatrix.Field
Field indicator (read-only).

 >Getting:

val = TransformMatrix.Field – (number)

TransformMatrix.Height
Actual image height, in pixels (read-only).

 >Getting:

val = TransformMatrix.Height – (number)

TransformMatrix.OriginalHeight
Unproxied image height, in pixels (read-only).

 >Getting:

val = TransformMatrix.OriginalHeight – (number)

TransformMatrix.OriginalWidth
Unproxied image width, in pixels (read-only).

 >Getting:

val = TransformMatrix.OriginalWidth – (number)

TransformMatrix.OriginalXScale
Unproxied pixel X Aspect (read-only).

 >Getting:

val = TransformMatrix.OriginalXScale – (number)

TransformMatrix.OriginalYScale
Unproxied pixel Y Aspect (read-only).

 >Getting:

val = TransformMatrix.OriginalYScale – (number)

TransformMatrix.ProxyScale
Image proxy scale multiplier (read-only).

 >Getting:

val = TransformMatrix.ProxyScale – (number)

207

SCRIPTING REFERENCE2

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

TransformMatrix.Width
Actual image width, in pixels (read-only).

 >Getting:

val = TransformMatrix.Width – (number)

TransformMatrix.XOffset
Image X Offset (read-only).

 >Getting:

val = TransformMatrix.XOffset – (number)

TransformMatrix.XScale
Pixel X Aspect (read-only).

 >Getting:

val = TransformMatrix.XScale – (number)

TransformMatrix.YOffset
Image X Offset (read-only).

 >Getting:

val = TransformMatrix.YOffset – (number)

TransformMatrix.YScale
Pixel Y Aspect (read-only).

 >Getting:

val = TransformMatrix.YScale – (number)

© Copyright 2016, Blackmagic Design.

3
Index

209

INDEX3

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

Symbols
_Heartbeat() (RenderJob method), 201

_Library_AddItem() (BinManager method), 57

_Library_DeleteItem() (BinManager method), 57

_Library_Reload() (BinManager method), 57

_Library_UpdateItem() (BinManager method), 57

A
Abort() (RenderSlave method), 203

AbortRender() (Composition method), 62

AbortRenderUI() (Composition method), 62

ActivateFrame() (ChildFrame method), 57

ActivateFrame() (FloatViewFrame method), 94

ActivateNextFrame() (ChildFrame method), 58

ActivateNextFrame() (FloatViewFrame method), 95

ActivatePrevFrame() (ChildFrame method), 58

ActivatePrevFrame() (FloatViewFrame method), 95

ActiveTool (Composition attribute), 61

AddAttachment() (MailMessage method), 150

AddFont() (FontList method), 98

AddHost() (ScriptServer method), 204

AddItem() (QueueManager method), 184

AddJob() (QueueManager method), 52, 185

AddModifier() (Operator method), 157

AddRecipients() (MailMessage method), 151, 151

AddSlave() (QueueManager method), 185

AddTool() (Composition method), 62

AddToolAction() (Composition method), 63

AddWatch() (QueueManager method), 186

AdjustKeyFrames() (BezierSpline method), 52

AllowNetwork() (Fusion method), 104

AreControlsShown() (GLViewer method), 138

AreGuidesShown() (GLViewer method), 139

AskRenderSettings() (Composition method), 63

AskUser() (Composition method), 63

AutoPos (Composition attribute), 61

B
BezierSpline (built-in class), 52

BinClip (built-in class), 55

BinItem (built-in class), 55

BinManager (built-in class), 56

Bins (Fusion attribute), 103

BinStill (built-in class), 57

Build (Fusion attribute), 103

C
CacheManager (Fusion attribute), 103

CenterSelected() (GL3DViewer method), 127

ChildFrame (built-in class), 57

ChildGroup (built-in class), 59

ChooseTool() (Composition method), 68

Clear() (FontList method), 98

ClearCompletedFrames() (RenderJob method), 199

ClearDiskCache() (PlainOutput method), 179

ClearFileLog() (Fusion method), 104

ClearUndo() (Composition method), 68

Close() (BinManager method), 56

Close() (Composition method), 68

Close() (IOClass method), 147

Close() (Preview method), 182

Composition (built-in class), 52

Composition (FuFrame attribute), 99

Composition (Operator attribute), 156

Connect() (ScriptServer method), 204

ConnectInput() (Operator method), 52

ConnectTo() (PlainInput method), 174, 175

ConsoleView (FuFrame attribute), 99

ConvertToBezier() (PolylineMask method), 182

210

INDEX3

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

ConvertToBSpline() (PolylineMask method), 52

Copy() (Composition method), 68

CopySettings() (Composition method), 69

Create() (Preview method), 182

CreateFloatingView() (Fusion method), 104

CreateMail() (Fusion method), 104

CreateStamp() (BinClip method), 55

CurrentComp (Fusion attribute), 103

CurrentFrame (Composition attribute), 61

CurrentTime (Composition attribute), 61

CurrentView (FuFrame attribute), 99

CurrentViewer (GLView attribute), 130

D
DataWindow (Image attribute), 144

Defragment() (BinClip method), 55

Defragment() (BinStill method), 57

Delete() (BinItem method), 55

Delete() (Operator method), 159

DeleteGuides() (GraphView method), 142

DeleteItem() (QueueManager method), 186

DeleteKeyFrames() (BezierSpline method), 53

DeleteSelected() (BinManager method), 56

DeleteStamp() (BinClip method), 55

Depth (Image attribute), 145

Depth (TransformMatrix attribute), 205

DisableCurrentTools() (GLView method), 130

DisableSelectedTools() (Composition method), 70

DisableSelectedTools() (GLView method), 130

DisplayImage() (Preview method), 182

DragRoI() (GLImageViewer method), 127

DumpCgObjects() (Fusion method), 105

DumpGLObjects() (Fusion method), 106

DumpGraphicsHardwareInfo() (Fusion method), 106

DumpOpenCLDeviceInfo() (Fusion method), 106

E
EnableDiskCache() (PlainOutput method), 180

EnableLUT() (GLImageViewer method), 127

EnableLUT() (GLView method), 130

EnableRoI() (GLImageViewer method), 127

EnableStereo() (GLView method), 130

End (TimeRegion attribute), 205

EndUndo() (Composition method), 70

Execute() (Composition method), 71

Execute() (Fusion method), 106

ExportTo3DLUT() (GLImageViewer method), 128

F
Field (Image attribute), 145

Field (TransformMatrix attribute), 206

FileLogging() (Fusion method), 103

FillColor (Operator attribute), 156

FindHost() (ScriptServer method), 204

FindMainInput() (Operator method), 159

FindMainOutput() (Operator method), 160

FindReg() (Fusion method), 106

FindTool() (Composition method), 71

FindToolByID() (Composition method), 71

FitAll() (GL3DViewer method), 127

FitSelected() (GL3DViewer method), 127

FloatViewFrame (built-in class), 94

FlowView (built-in class), 95

FlowView (FuFrame attribute), 99

Flush() (IOClass method), 147

FlushSetPosQueue() (FlowView method), 95

FontList (built-in class), 98

FontManager (Fusion attribute), 103

FrameAll() (FlowView method), 95

FreeSpace() (ImageCacheManager method), 146

211

INDEX3

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

FromFrameString() (TimeRegion method), 205

FromTable() (TimeRegion method), 205

FuFrame (built-in class), 99

Fusion (built-in class), 102

FuView (built-in class), 126

G
GetAlphaOverlayColor() (GLViewer method), 139

GetAppInfo() (Fusion method), 107

GetArgs() (Fusion method), 107

GetAspectCorrection() (GLViewer method), 139

GetBezierPolyline() (PolylineMask method), 182

GetBuffer() (GLView method), 131

GetChannel() (GLViewer method), 139

GetChildrenList() (Operator method), 161

GetClipboard() (Fusion method), 107

GetClipboard() (GraphView method), 142

GetCompList() (Fusion method), 108

GetCompPathMap() (Composition method), 73

GetConnectedInputs() (PlainOutput method), 180

GetConnectedOutput() (PlainInput method), 176

GetConsoleHistory() (Composition method), 73

GetControlPageNames() (Operator method), 162

GetControlViewList() (ChildFrame method), 58

GetCPULoad() (Fusion method), 107

GetCurrentComp() (Fusion method), 108

GetCurrentSettings() (Operator method), 162

GetData() (BinItem method), 55

GetData() (Composition method), 74

GetData() (Fusion method), 108

GetData() (Link method), 148

GetData() (Operator method), 162

GetData() (Parameter method), 171

GetDefaults() (HotkeyManager method), 144

GetDoD() (PlainOutput method), 180

GetEnv() (Fusion method), 108

GetExpression() (PlainInput method), 176

GetFailedSlaves() (RenderJob method), 199

GetFilePos() (IOClass method), 147

GetFileSize() (IOClass method), 147

GetFontList() (FontList method), 99

GetFrameList() (Composition method), 75

GetFrames() (RenderJob method), 200

GetGlobalPathMap() (Fusion method), 108

GetGroupList() (QueueManager method), 186

GetGuides() (GraphView method), 142

GetHostList() (ScriptServer method), 204

GetHotkeys() (HotkeyManager method), 144

GetID() (ChildGroup method), 59

GetID() (QueueManager method), 186

GetInput() (Operator method), 163

GetInputList() (Operator method), 163

GetItemList() (QueueManager method), 186

GetJob() (RenderSlave method), 203

GetJobFromID() (QueueManager method), 186

GetJobList() (QueueManager method), 186

GetJobs() (QueueManager method), 187

GetKeyFrames() (BezierSpline method), 53

GetKeyFrames() (Operator method), 164

GetKeyFrames() (PlainInput method), 176

GetKeyNames() (HotkeyManager method), 144

GetLocked() (GLView method), 131

GetMainViewList() (ChildFrame method), 58

GetMainWindow() (Fusion method), 109

GetMenus() (MenuManager method), 153

GetModifierNames() (HotkeyManager method), 144

GetNextKeyTime() (Composition method), 76

GetOutputList() (Operator method), 165

GetOwner() (ChildGroup method), 59

212

INDEX3

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

GetPos() (FlowView method), 95

GetPos() (GLView method), 131

GetPos() (GLViewer method), 139

GetPosTable() (FlowView method), 96

GetPosTable() (GLView method), 131

GetPosTable() (GLViewer method), 139

GetPrefs() (Composition method), 76

GetPrefs() (Fusion method), 109

GetPrefs() (GLView method), 131

GetPreview() (GLView method), 131

GetPreviewList() (Composition method), 77

GetPreviewList() (FuFrame method), 101

GetPreviewList() (Fusion method), 109

GetPrevKeyTime() (Composition method), 77

GetRegAttrs() (Fusion method), 109

GetRegList() (Fusion method), 110

GetRegSummary() (Fusion method), 113

GetRenderReport() (RenderJob method), 200

GetRootData() (QueueManager method), 187

GetRootID() (BinManager method), 56

GetRootLibraryInfo() (BinManager method), 56

GetRot() (GLView method), 131

GetRot() (GLViewer method), 139

GetRotTable() (GLView method), 132

GetRotTable() (GLViewer method), 140

GetScale() (FlowView method), 96

GetScale() (GLView method), 132

GetScale() (GLViewer method), 140

GetSchemaList() (QueueManager method), 187

GetSelectedIDs() (BinManager method), 56

GetSize() (ImageCacheManager method), 146

GetSlaveFromID() (QueueManager method), 187

GetSlaveList() (QueueManager method), 187

GetSlaveList() (RenderJob method), 200

GetSlaves() (QueueManager method), 188

GetSplit() (GLView method), 132

GetSplitTable() (GLView method), 132

GetStereoMethod() (GLView method), 132

GetStereoSource() (GLView method), 132

GetTable() (MailMessage method), 151

GetTool() (Link method), 149

GetToolList() (Composition method), 78

GetUnrenderedFrames() (RenderJob method), 200

GetValue() (PlainOutput method), 181

GetViewerList() (GLView method), 132

GetViewLayout() (ChildFrame method), 58

GetViewList() (Composition method), 79

GetViewList() (FuFrame method), 101

GL3DViewer (built-in class), 127

GLImageViewer (built-in class), 127

GLPreview (built-in class), 129

GLView (built-in class), 129

GLViewer (built-in class), 138

GoNextKeyTime() (GraphView method), 142

GoNextKeyTime() (KeyFrameView method), 148

GoPrevKeyTime() (GraphView method), 142

GoPrevKeyTime() (KeyFrameView method), 148

Gradient (built-in class), 141

GraphView (built-in class), 142

H
Heartbeat() (Composition method), 79

Height (Image attribute), 145

Height (TransformMatrix attribute), 206

HideViewControls() (PlainInput method), 177

HideWindowControls() (PlainInput method), 177

HotkeyManager (built-in class), 144

HotkeyManager (Fusion attribute), 104

213

INDEX3

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

I
ID (Link attribute), 148

ID (Operator attribute), 156

ID (Parameter attribute), 171

ID (Registry attribute), 197

ID() (FuView method), 126

Image (built-in class), 144

ImageCacheManager (built-in class), 146

InfoView (FuFrame attribute), 100

IOClass (built-in class), 147

IsClassType() (Registry method), 197

IsDisconnecting() (RenderSlave method), 203

IsIdle() (RenderSlave method), 204

IsLocked() (Composition method), 79

IsLUTEnabled() (GLImageViewer method), 128

IsLUTEnabled() (GLView method), 132

IsOpen() (BinManager method), 56

IsPlaying() (Composition method), 79

IsPlaying() (Preview method), 183

IsProcessing() (RenderSlave method), 204

IsRegClassType() (Registry method), 197

IsRendering() (Composition method), 79

IsRendering() (RenderJob method), 200

IsRoom() (ImageCacheManager method), 147

IsStereoEnabled() (GLView method), 133

IsStereoSwapped() (GLView method), 133

K
KeyFrameView (built-in class), 148

L
LeftView (FuFrame attribute), 100

Link (built-in class), 148

List (built-in class), 149

LoadComp() (Fusion method), 113, 114

Loader (built-in class), 149

LoadFile() (GLViewer method), 140

LoadHotkeys() (HotkeyManager method), 144

LoadLUTFile() (GLImageViewer method), 128

LoadLUTFile() (GLView method), 133

LoadMenus() (MenuManager method), 153

LoadPrefs() (Fusion method), 115

LoadPrefs() (GLView method), 133

LoadQueue() (QueueManager method), 188

LoadRecentComp() (Fusion method), 115

LoadSettings() (Operator method), 166, 167

LoadSlaveList() (QueueManager method), 188

Lock() (Composition method), 79

LockRoI() (GLImageViewer method), 128

Log() (QueueManager method), 189

Loop() (Composition method), 80

M
MailMessage (built-in class), 149

MapPath() (Composition method), 80

MapPath() (Fusion method), 115

MapPathSegments() (Composition method), 81

MapPathSegments() (Fusion method), 116

MenuManager (built-in class), 153

MenuManager (Fusion attribute), 104

Metadata() (Parameter method), 171

ModifierView (FuFrame attribute), 100

MoveJob() (QueueManager method), 189

N
Name (Link attribute), 148

Name (Operator attribute), 156

Name (Parameter attribute), 171

Name (Registry attribute), 197

NetJoinRender() (QueueManager method),190

214

INDEX3

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

NetRenderAbort() (Composition method), 82

NetRenderEnd() (Composition method), 82

NetRenderStart() (Composition method), 82

NetRenderTime() (Composition method), 82

NewComp() (Fusion method), 116

O
Object (built-in class), 153

Open() (BinManager method), 56

Open() (Preview method), 183

OpenFile() (Fusion method), 116

OpenLibrary() (Fusion method), 117

Operator (built-in class), 153

OriginalHeight (Image attribute), 145

OriginalHeight (TransformMatrix attribute), 206

OriginalWidth (Image attribute), 145

OriginalWidth (TransformMatrix attribute), 206

OriginalXScale (Image attribute), 145

OriginalXScale (TransformMatrix attribute), 206

OriginalYScale (Image attribute), 145

OriginalYScale (TransformMatrix attribute), 206

P
Parameter (built-in class), 171

Parent (Registry attribute), 197

ParentTool (Operator attribute), 156

Paste() (Composition method), 82

Paste() (GraphView method), 143

PlainInput (built-in class), 172

PlainOutput (built-in class), 179

Play() (Composition method), 83

Play() (Preview method), 183

PlaySelected() (BinManager method), 56

PolylineMask (built-in class), 181

Preview (built-in class), 182

Print() (Composition method), 83

ProxyScale (Image attribute), 145

ProxyScale (TransformMatrix attribute), 206

Purge() (ImageCacheManager method), 147

Q
QueueComp() (Fusion method), 117, 119

QueueManager (built-in class), 183

QueueManager (Fusion attribute), 104

QueueSetPos() (FlowView method), 97

Quit() (Fusion method), 121

R
Read() (IOClass method), 147

ReadLine() (IOClass method), 147

Redo() (Composition method), 83

Redraw() (GLViewer method), 140

Refresh() (BinManager method), 57

Refresh() (FuView method), 127

Refresh() (Operator method), 167

Registry (built-in class), 191

RemoveAllAttachments() (MailMessage method),
151

RemoveAllRecipients() (MailMessage method), 151

RemoveHost() (ScriptServer method), 204

RemoveJob() (QueueManager method), 190

RemoveSlave() (QueueManager method), 190

RemoveWatch() (QueueManager method), 191

RenameSelected() (BinManager method), 191

Render() (Composition method), 83, 83

RenderJob (built-in class), 197

RenderManager (Fusion attribute), 104

RenderSlave (built-in class), 201

ResetView() (GLView method), 133

ResetView() (GLViewer method), 140

215

INDEX3

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

RetrySlave() (RenderJob method), 200

ReverseMapPath() (Composition method), 88

ReverseMapPath() (Fusion method), 121

RightView (FuFrame attribute), 100

RunScript() (Composition method), 89

RunScript() (Fusion method), 121

S
Save() (Composition method), 89

SaveAs() (Composition method), 89

SaveCopyAs() (Composition method), 89

SaveFile() (GLViewer method), 140

SaveHotkeys() (HotkeyManager method), 144

SaveLUTFile() (GLImageViewer method), 128

SaveMenus() (MenuManager method), 153

SavePrefs() (Fusion method), 121

SavePrefs() (GLView method), 133

SaveQueue() (QueueManager method), 191

SaveSettings() (Operator method), 167, 168

SaveSlaveList() (QueueManager method), 191

ScanDir() (FontList method), 99

ScanForSlaves() (QueueManager method), 191

ScriptServer (built-in class), 204

Seek() (IOClass method), 147

Seek() (Preview method), 183

Select() (FlowView method), 97

Send() (MailMessage method), 151

SetActiveTool() (Composition method), 89

SetAlphaOverlayColor() (GLViewer method), 140

SetAspectCorrection() (GLViewer method), 140

SetBatch() (Fusion method), 122

SetBody() (MailMessage method), 151

SetBuffer() (GLView method), 134

SetChannel() (GLViewer method), 140

SetClipboard() (Fusion method), 122

SetCurrentSettings() (Operator method), 168

SetData() (BinItem method), 56

SetData() (Composition method), 90

SetData() (Fusion method), 122

SetData() (Link method), 149

SetData() (Operator method), 170

SetData() (Parameter method), 172

SetExpression() (PlainInput method), 178

SetFrames() (RenderJob method), 201

SetGuides() (GraphView method), 143

SetHotkey() (HotkeyManager method), 144

SetHotkeys() (HotkeyManager method), 144

SetHTMLBody() (MailMessage method), 152

SetInput() (Operator method), 170

SetKeyFrames() (BezierSpline method), 54

SetLibraryRoot() (BinManager method), 57

SetLocked() (GLView method), 134

SetLogin() (MailMessage method), 152

SetMultiClip() (Loader method), 149

SetPassword() (MailMessage method), 152

SetPos() (FlowView method), 97

SetPos() (GLView method), 134

SetPos() (GLViewer method), 141

SetPrefs() (Composition method), 91, 91

SetPrefs() (Fusion method), 123, 123

SetRoI() (GLImageViewer method), 128, 128, 129

SetRot() (GLView method), 135

SetRot() (GLViewer method), 141

SetScale() (FlowView method), 98

SetScale() (GLView method), 135

SetScale() (GLViewer method), 141

SetSender() (MailMessage method), 152

SetServer() (MailMessage method), 152

SetSplit() (GLView method), 152

216

INDEX3

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

SetStereoMethod() (GLView method), 136

SetStereoSource() (GLView method), 136

SetSubject() (MailMessage method), 152

SetViewLayout() (ChildFrame method), 58

ShowAbout() (Fusion method), 124

ShowControlPage() (Operator method), 170

ShowControls() (GLViewer method), 141

ShowDiskCacheDlg() (PlainOutput method), 181

ShowDoD() (GLImageViewer method), 129

ShowGuides() (GLViewer method), 141

ShowingQuadView() (GLView method), 137

ShowingSubView() (GLView method), 137

ShowLUTEditor() (GLImageViewer method), 129

ShowLUTEditor() (GLView method), 137

ShowPrefs() (Fusion method), 124

ShowQuadView() (GLView method), 137

ShowRoI() (GLImageViewer method), 129

ShowSubView() (GLView method), 137

ShowWindow() (Fusion method), 124

SourceOperator (built-in class), 204

SplineView (FuFrame attribute), 100

Start (TimeRegion attribute), 205

Start() (QueueManager method), 191

StartHost() (ScriptServer method), 204

StartUndo() (Composition method), 92

Stop() (Composition method), 93

Stop() (Preview method), 183

Stop() (QueueManager method), 191

SwapStereo() (GLView method), 137

SwapSubView() (GLView method), 137

SwitchControlView() (ChildFrame method), 58

SwitchMainView() (ChildFrame method), 59

SwitchView() (FuFrame method), 101

T
Test() (Fusion method), 125

TextColor (Operator attribute), 156

TileColor (Operator attribute), 156

TimelineView (FuFrame attribute), 100

TimeRegion (built-in class), 204

TimeRulerView (FuFrame attribute), 204

ToFrameString() (TimeRegion method), 205

ToggleBins() (Fusion method), 125

ToggleRenderManager() (Fusion method), 126

ToggleUtility() (Fusion method), 126

ToolView (FuFrame attribute), 100

ToTable() (TimeRegion method), 205

TransformMatrix (built-in class), 205

TransportView (FuFrame attribute), 101

U
Undo() (Composition method), 93

Unlock() (Composition method), 94

UpdateItem() (QueueManager method), 191

UpdateMode() (Composition method), 61

UpdateViews() (Composition method), 94

UserControls (Operator attribute), 157

V
Value (Gradient attribute), 142

Version (Fusion attribute), 104

View (GLPreview attribute), 104

ViewControlsVisible() (PlainInput method), 179

ViewOn() (FuFrame method), 101

ViewOn() (Preview method), 183

W
Width (Image attribute), 146

Width (TransformMatrix attribute), 207

217

INDEX3

FUSION SCRIPTING GUIDE AND REFERENCE MANUAL

WindowControlsVisible() (PlainInput method), 179

Write() (IOClass method), 147

WriteLine() (IOClass method), 147

X
XOffset (Image attribute), 146

XOffset (TransformMatrix attribute), 207

XPos (Composition attribute), 61

XScale (Image attribute), 146

XScale (TransformMatrix attribute), 207

Y
YOffset (Image attribute), 146

YOffset (TransformMatrix attribute), 207

YPos (Composition attribute), 62

YScale (Image attribute), 146

YScale (TransformMatrix attribute), 207

Z
ZoomFit() (GraphView method), 143

ZoomIn() (GraphView method), 143

ZoomOut() (GraphView method), 143

ZoomRectangle() (GraphView method), 143, 143

	About this Document
	Target Audience
	Requirements
	Conventions

	Scripting Guide
	Introduction
	Quick Start Tutorial

	Scripting Languages
	Lua
	Python

	Scripting and Debugging
	Console

	Types of Scripts
	Interactive Scripts
	External Scripts
	Events & Callbacks
	InTool Scripts
	Simple Expressions
	Fuses

	Fusion’s Object Model
	Overview
	Common Object Dependencies
	Attributes
	Object Data
	Metadata

	Graphical User Interfaces

	Scripting Reference
	Class Hierarchy
	Reference
	BezierSpline
	BinClip
	BinItem
	BinManager
	BinStill
	ChildFrame
	ChildGroup
	Composition
	FloatViewFrame
	FlowView
	FontList
	FuFrame
	Fusion
	FuView
	GL3DViewer
	GLImageViewer
	GLPreview
	GLView
	GLViewer
	Gradient
	GraphView
	HotkeyManager
	Image
	ImageCacheManager
	IOClass
	KeyFrameView
	Link
	List
	Loader
	MailMessage
	MenuManager
	Object
	Operator
	Parameter
	PlainInput
	PlainOutput
	PolylineMask
	Preview
	QueueManager
	Registry
	RenderJob
	RenderSlave
	ScriptServer
	SourceOperator
	TimeRegion
	TransformMatrix

	Index
	Introduction
	Quick Start Tutorial

	Scripting Languages
	Lua
	Python

	Scripting and Debugging
	Console

	Types of Scripts
	Interactive Scripts
	External Scripts
	Events & Callbacks
	InTool Scripts
	Simple Expressions
	Fuses

	Fusion’s Object Model
	Overview
	Common Object Dependencies
	Attributes
	Object Data
	Metadata

	Graphical User Interfaces
	Class Hierarchy
	Reference
	BezierSpline
	BinClip
	BinItem
	BinManager
	BinStill
	ChildFrame
	ChildGroup
	Composition
	FloatViewFrame
	FlowView
	FontList
	FuFrame
	Fusion
	FuView
	GL3DViewer
	GLImageViewer
	GLPreview
	GLView
	GLViewer
	Gradient
	GraphView
	HotkeyManager
	Image
	ImageCacheManager
	IOClass
	KeyFrameView
	Link
	List
	Loader
	MailMessage
	MenuManager
	Object
	Operator
	Parameter
	PlainInput
	PlainOutput
	PolylineMask
	Preview
	QueueManager
	Registry
	RenderJob
	RenderSlave
	ScriptServer
	SourceOperator
	TimeRegion
	TransformMatrix

